共查询到20条相似文献,搜索用时 15 毫秒
1.
Takashi Sato 《Development genes and evolution》1988,197(7):435-440
Summary
Regulator of bithorax (Rg-bx)–, or trithorax (trx)– lethal larvae occasionally show a homoeotic transformation of the dorsal prothorax to mesothoracic structures. This transformation suggests a reduced activity of the Sex combs reduced (Scr) gene on the basis of gene dosage studies, as well as enhanced expression of the phenotypes of the weak Scr
– alleles in Rg-bx
– larvae. Morphological observations of adult flies doubly heterozygous for Rg-bx and Scr mutations also suggest the enhancement of an aspect of Scr adult phenotypes. I conclude that the Rg-bx
+ gene function is required for the optimal expression of the Scr gene in larval and imaginai cells. 相似文献
2.
3.
A Genetic Analysis of Deltex and Its Interaction with the Notch Locus in Drosophila Melanogaster 下载免费PDF全文
During Drosophila development networks of genes control the developmental pathways that specify cell fates. The Notch gene is a well characterized member of some cell fate pathways, and several other genes belonging to these same pathways have been identified because they share a neurogenic null phenotype with Notch. However, it is unlikely that the neurogenic genes represent all of the genes in these pathways. The goal of this research was to use a genetic approach to identify and characterize one of the other genes that acts with Notch to specify cell fate. Mutant alleles of genes in the same pathway should have phenotypes similar to Notch alleles and should show phenotypic interactions with Notch alleles. With this approach we identified the deltex gene as a potential cell fate gene. An extensive phenotypic characterization of loss-of-function deltex phenotypes showed abnormalities (such as thick wing veins, double bristles and extra cone cells) that suggest that deltex is involved in cell fate decision processes. Phenotypic interactions between deltex and Notch as seen in double mutants showed that Notch and deltex do not code for duplicate functions and that the two genes function together in many different developing tissues. The results of these investigations lead to the conclusion that the deltex gene functions with the Notch gene in one or more developmental pathways to specify cell fate. 相似文献
4.
Homoeosis in Drosophila: anterior and posterior transformations of Polycomb lethal embryos 总被引:3,自引:0,他引:3
Lethal embryos homozygous for Polycomb (Pc) mutations show transformations of segment-specific cuticular features to those of more anterior or posterior segments; the frequency and extent of such changes show differences which depend on the genotype and the region. The mesothorax of Polycomb lethal embryos often shows posterior transformations of the anterior- and posterior-most portions of the segment, and anterior transformations of the medial portion. A comparison of Polycomb embryos also bearing various genetic lesions of the bithorax gene complex (BX-C) shows that the penetrance of anterior transformation and the extent of posterior transformation in the appears independent of posterior transformation, even though cells undergoing each of these changes lie in close proximity in the developing embryo. It has been shown previously that in Polycomb lethal embryos posterior transformations require the normal function of the BX-C. We show here that anterior transformations of the mesothorax and other segments require the normal function of the Sex combs reduced (Scr) locus, also necessary for the normal development of the prothorax and some head segments. Similar observations are also presented for a Polycomblike mutation. We suggest that in Polycomb embryos there are errors in the clonal transmission of determined states resulting in expression of the BX-C and Scr+ loci at abnormal locations, and that such events are probabilistic in nature and show marked regional differences in frequency. 相似文献
5.
Interaction of the Stubble-Stubbloid Locus and the Broad-Complex of Drosophila Melanogaster 总被引:2,自引:3,他引:2
The 2B5 region on the X chromosome of Drosophila melanogaster forms an early ecdysone puff at the end of the third instar. The region is coextensive with a complex genetic locus, the Broad-Complex (BR-C). The BR-C is a regulatory gene that contains two major functional domains, the br domain and the l(1)2Bc domain. BR-C mutants prevent metamorphosis, including morphogenesis of imaginal discs; br mutants prevent elongation and eversion of appendages and l(1)2Bc mutants prevent fusion of the discs. The Stubble-stubbloid (Sb-sbd) locus at 89B9-10 is best known for the effects of its mutants on bristle structure. Mutants of the BR-C and the Sb-sbd locus interact to produce severe malformation of appendages. Viable heteroallelic and homoallelic combinations of Sb-sbd mutants, including loss-of-function mutants, affect the elongation of imaginal disc appendages. Thus, the Sb-sbd(+) product is essential for normal appendage elongation. Sb-sbd mutants, however, do not affect eversion or fusion of discs. Correspondingly, only BR-C mutants deficient in br function interact with Sb-sbd mutants. The interaction occurs in deficiency heterozygotes using single, wild-type doses of the BR-C, of the Sb-sbd locus, or of both loci. These last results are formally consistent with the possibility that the BR-C acts as a positive regulator of the Sb-sbd locus. The data do not exclude other possible nonregulatory interactions between the two loci, e.g., interactions between the products of both genes. 相似文献
6.
Background
Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called “Enhancers of Trithorax and Polycomb” (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown.Methodology/Principal Findings
In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene.Conclusions/Significance
Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG. 相似文献7.
8.
R. E. Denell 《Genesis (New York, N.Y. : 2000)》1982,3(2):103-113
When heterozygous, dominant mutant alleles of the Polycomb locus are associated with a variety of adult homoeotic effects. Zygotes homozygous for these alleles die as late embryos showing homoeotic transformation of head, thoracic, and abdominal segments. This study shows that embryos homozygous for Pc3 are more extreme than those homozygous for Pc1 or Pc2. Moreover, Pc1/Pc3 heterozygotes are more extensively transformed if their mothers were Pc3/ + than if they were Pc1/ +; this effect does not depend on zygotic genetic background and must be maternal in nature. Embryos homozygous for Pc3 are less extreme if they arise from Pc3/ + / + than from Pc3/ + mothers. These results strongly suggest that the Polycomb locus acts maternally as well as zygotically to affect early determinative decisions. 相似文献
9.
A new recessive lethal mutation in Drosophila melanogaster , Enhancer of Polycomb [E(Pc)], and chromosomal deficiencies lacking this locus act as dominant enhancers of the Polycomb mutant syndrome in adults. Thus, although E(Pc)/+ flies are phenotypically normal, this locus is haplo-abnormal with respect to its effect on the Polycomb phenotype. Recombinational and deficiency mapping localize the E(Pc) locus on chromosome 2 proximally and very closely linked (~0.1 map unit) to the engrailed gene. E(Pc) enhances the expression of all Polycomb point mutations examined including that of a deficiency, indicating that this interaction does not depend on the presence of an altered Polycomb gene product. In several respects the mutations extra sex comb, lethal(4)29, and Polycomblike resemble those at the Polycomb locus. In the presence of E(Pc), recessive alleles of extra sex comb and lethal(4)29 are rendered slightly pseudodominant, and the homoeotic effects of Polycomblike heterozygotes are also enhanced. However, E(Pc) does not affect the expression of dominant mutations within the Bithorax gene complex (Cbx) or Antennapedia gene complex (AntpNs, Antp73b, Antpscx , AntpEfW15, ScrMsc) which give homoeotic transformations resembling those of the Polycomb syndrome. Available evidence from the study of adult phenotypes suggests that mutations at E(Pc) do not result in homoeotic changes directly but instead modify the expression of a specific set of functionally related homoeotic variants. 相似文献
10.
The Doublesex Locus of Drosophila Melanogaster and Its Flanking Regions: A Cytogenetic Analysis 下载免费PDF全文
The region of the third chromosome (84D-F) of Drosophila melanogaster that contains the doublesex (dsx) locus has been cytogenetically analyzed. Twenty nine newly induced, and 42 preexisting rearrangements broken in dsx and the regions flanking dsx have been cytologically and genetically characterized. These studies established that the dsx locus is in salivary chromosome band 84E1-2. In addition, these observations provide strong evidence that the dsx locus functions only to regulate sexual differentiation and does not encode a vital function. To obtain new alleles at the dsx locus and to begin to analyze the genes flanking dsx, 59 lethal and visible mutations in a region encompassing dsx were induced. These mutations together with preexisting mutations in the region were deficiency mapped and placed into complementation groups. Among the mutations we isolated, four new mutations affecting sexual differentiation were identified. All proved to be alleles of dsx, suggesting that dsx is the only gene in this region involved in regulating sexual differentiation. All but one of the new dsx alleles have equivalent effects in males and females. The exception, dsxEFH55, strongly affects female sexual differentiation, but only weakly affects male sexual differentiation. The interactions of dsxEFH55 with mutations in other genes affecting sexual differentiation are described. These results are discussed in terms of the recent molecular findings that the dsx locus encodes sex-specific proteins that share in common their amino termini but have different carboxyl termini. The 72 mutations in this region that do not affect sexual differentiation identify 25 complementation groups. A translocation, T(2;3)Es that is associated with a lethal allele in one of these complementation groups is also broken at the engrailed (en) locus on the second chromosome and has a dominant phenotype that may be due to the expression of en in the anterior portion of the abdominal tergites where en is not normally expressed. The essential genes found in the 84D-F region are not evenly distributed throughout this region; most strikingly the 84D1-11 region appears to be devoid of essential genes. It is suggested that the lack of essential genes in this region is due to the region (1) containing genes with nonessential functions and (2) being duplicated, possibly both internally and elsewhere in the genome. 相似文献
11.
From the ca;px stock, which is the progenitor of Om mutants caused by insertions of the tom retrotransposon, 50 kb of genomic DNA including the Om(1D) locus was cloned by tom tagging and chromosome walking. Southern blot analyses of six Om(1D) mutants exposed one or two tom elements inserted at five nonrandom sites within an 18-kb distal segment of the restriction map; the phenotypic uniformity between these mutants was not affected by variations in the position, number or orientation of their inserts. Spontaneous revertants or more extreme derivatives of Om(1D) alleles were nonlinearly associated with losses or gains of tom inserts. Seven of eight radiation induced derivatives of Om(1D) mutants had one breakpoint of a chromosome rearrangement in polytene section 13A which includes the Om(1D) locus. Two Om(1D) derivatives, a spontaneous revertant and an induced extreme allele, were associated with overlapping deficiencies which define a region that is likely to contain the Om(1D) coding seguences proximal to the tom insertion sites. Incidental results confirm the previously indicated homology of the Om(1D) locus with the Bar locus of Drosophila melanogaster. 相似文献
12.
The bithorax (BX) complex of Drosophila is a complex polygenic region with a multifactorial system of regulation. One of the levels of the regulatory system of the BX complex is its association with the nuclear skeleton structures through a specific interaction of the M/SAR DNA with the nuclear matrix proteins. In the present work, M/SAR elements were mapped on the molecular-genetic map of the region. All of the elements examined were found to colocalize with regulatory elements and form clusters that restrict/bracket the genetically active domains. All M/SAR DNA revealed was shown to bins specifically to the purified Drosophila melanogaster lamin. 相似文献
13.
A Genetic Analysis of the Stoned Locus and Its Interaction with Dunce, Shibire and Suppressor of Stoned Variants of Drosophila Melanogaster 下载免费PDF全文
The genetic complementation patterns of both behavioral and lethal alleles at the stoned locus have been characterized. Mosaic analysis of a stoned lethal allele suggests that stoned functions either in the nervous system or in both the nervous system and musculature, but is not required for gross neural development. The behavioral alleles stn(ts) and stn(C), appear to be defective in a diametrically opposite sense, show interallelic complementation, and indicate distinct roles for the stoned gene product in the visual system and in motor coordination. A number of other neurological mutations have been investigated for their possible interaction with the viable stoned alleles. Mutations at two loci, dunce and shibire, act synergistically with the stn(ts) mutations to cause lethality, but fail to interact with stn(C). A third variant (Suppressor of stoned) has been identified which can suppress the debilitation associated with the stn(ts) mutations. These data, together with a previously identified interaction between the stn(ts) and tan mutants, indicate a central role for the stoned gene product in neuronal function, and suggests that the stoned gene product interacts, either directly or indirectly, with the neural cAMP second messenger system, with the synaptic membrane recycling pathway via dynamin, and with biogenic amine metabolism. 相似文献
14.
15.
Fang Cao Yi Miao Kedong Xu Peijun Liu 《International journal of biological sciences》2015,11(4):380-389
Cell polarity is one of the most basic properties of all normal cells and is essential for regulating numerous biological processes. Loss of polarity is considered a hallmark for cancer. Multiple polarity proteins are implicated in maintenance of cell polarity. Lethal (2) giant larvae (Lgl) is one of polarity proteins that plays an important role in regulating cell polarity, asymmetric division as well as tumorigenesis. Lgl proteins in different species have similar structures and conserved functions. Lgl acts as an indispensable regulator of cell biological function, including cell polarity and asymmetric division, through interplaying with other polarity proteins, regulating exocytosis, mediating cytoskeleton and being involved in signaling pathways. Furthermore, Lgl plays a role of a tumor suppressor, and the aberrant expression of Hugl, a human homologue of Lgl, contributes to multiple cancers. However, the exact functions of Lgl and the underlying mechanisms remain enigmatic. In this review, we will give an overview of the Lgl functions in cell polarity and cancer development, discuss the potential mechanisms underlying these functions, and raise our conclusion of previous studies and points of view about the future studies. 相似文献
16.
17.
18.
The molecular genetics of the bithorax complex of Drosophila: cis-regulation in the Abdominal-B domain. 总被引:10,自引:3,他引:10 下载免费PDF全文
In Drosophila the Abdominal-B (Abd-B) domain of the bithorax complex (BX-C) spans over 100 kb and is responsible for specifying the identities of adult abdominal segments five (A5) to nine (A9), inclusive, and correspondingly, neuromeres 10-14 of the embryonic central nervous system. The domain consists of a region coding for two proteins, ABD-BI (54 kd) and ABD-BII (36 kd) and cis-regulatory regions extending from infra-abdominal-5 (iab-5) to iab-9, inclusive. We have used a monoclonal anti-ABD-B antibody to infer that mutants in iab-8 eliminate the expression of ABD-BI in neuromeres 10-13, inclusive, and that mutants in iab-9 eliminate expression of ABD-BII in neuromere 14. ABD-B expression is also analyzed in homozygotes for (i) loss-of-function mutants involving the iab-5, iab-6 and iab-7 regions, (ii) gain-of-function mutants Miscadastral pigmentation (Mcp) and Superabdominal (Sab), and (iii) a trans-regulator, Polycomb (Pc). ABD-B expression along the antero-posterior axis is colinear with the chromosomal order of the cis-regulatory regions. The behavior of rearrangement-associated iab-6 and iab-7 mutants suggests that the enhancer-like region, iab-5, and possibly also iab-6, may be shared between the abd-A and Abd-B domains. Such sharing is proposed as a factor that tends to keep gene complexes intact during evolution. 相似文献
19.
A Female-Specific Lethal Lesion in an X-Linked Positive Regulator of the Drosophila Sex Determination Gene, SEX-LETHAL 总被引:5,自引:5,他引:5 下载免费PDF全文
Thomas W. Cline 《Genetics》1986,113(3):641-663
20.
Cytogenetic Analysis of Segregation Distortion in Drosophila Melanogaster: The Cytological Organization of the Responder (Rsp) Locus 总被引:2,自引:7,他引:2
The segregation distortion phenomenon occurs in Drosophila melanogaster males carrying an SD second chromosome and an SD+ homolog. In such males the SD chromosome is transmitted to the progeny more frequently than the expected 50% because of an abnormal differentiation of the SD+-bearing sperms. Three major loci are involved in this phenomenon: SD and Rsp, associated with the SD and SD+ chromosome, respectively, and E(SD). In the present work we performed a cytogenetic analysis of the Rsp locus which was known to map to the centromeric heterochromatin of the second chromosome. Hoechst- and N-banding techniques were used to characterize chromosomes carrying Responder insensitive (Rspi), Responder sensitive (Rsps) and Responder supersensitive (Rspss) alleles. Our results locate the Rsp locus to the h39 region of 2R heterochromatin. This region is a Hoechst-bright, N-banding negative heterochromatic block adjacent to the centromere. Quantitative variations of the h39 region were observed. The degree of sensitivity to Sd was found to be directly correlated with the physical size of that region, demonstrating that the Rsp locus is composed of repeated DNA. 相似文献