共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial extracellular matrix is organized into a complex arrangement of intercellular and pericellular fibres and fibrils that serves as a supporting framework for contracting cells. Recent evidence suggests that changes in ventricular shape and function occurring after ischaemic injury may be related to alterations of this matrix. In this report we describe the rapid and extensive loss of collagen in myocardial infarction produced by ligating the left anterior descending coronary artery of the rat for 1-3 h. The total collagen content in the myocardial infarct zones after 1, 2 and 3 h of ligation was 75 +/- 8%, 65 +/- 7% and 50 +/- 10% respectively (mean +/- S.D.) of that of either the non-infarcted tissue controls or of the same regions in sex- and age-matched normal left ventricles. A marked decrease also occurred in the residual collagens which were not extractable with 6 M-guanidine hydrochloride, suggesting that rapid degradation of insoluble collagen fibres may also occur. The decreased collagen content in the 3 h myocardial infarct coincided with the appearance of several enzyme activities. Collagenase, other neutral proteinase and presumed lysosomal serine proteinase activities were increased by 3, 3 and 2 times the control values respectively. These results suggest that the increased activities of collagenase and other neutral proteinases may be responsible for the rapid degradation of extracellular matrix collagen in myocardial infarct. 相似文献
2.
3.
Amar P Ballet P Barlovatz-Meimon G Benecke A Bernot G Bouligand Y Bourguine P Delaplace F Delosme JM Demarty M Fishov I Fourmentin-Guilbert J Fralick J Giavitto JL Gleyse B Godin C Incitti R Képès F Lange C Le Sceller L Loutellier C Michel O Molina F Monnier C Natowicz R Norris V Orange N Pollard H Raine D Ripoll C Rouviere-Yaniv J Saier M Soler P Tambourin P Thellier M Tracqui P Ussery D Vincent JC Vannier JP Wiggins P Zemirline A 《Acta biotheoretica》2002,50(4):357-373
4.
Nonlysosomal processing of cell-surface heparan sulfate proteoglycans. Studies of I-cells and NH4Cl-treated normal cells 总被引:1,自引:0,他引:1
The metabolism of cell-associated proteoglycans, labeled in the glycosaminoglycan portion with 35SO2-4, was studied in normal skin fibroblasts (SL66 cells), NH4Cl-treated SL66 fibroblasts, and in I-cells derived from patients with mucolipidosis II. Kinetic data from label-chase experiments and gel filtration analysis of the molecular weight distribution of the radiolabeled glycosaminoglycans indicated that I-cells and NH4Cl-treated normal fibroblasts (a) internalize cell surface proteoglycans, (b) remove glycosaminoglycan chains from proteoglycan core proteins, and (c) degrade heparan sulfate glycosaminoglycan chains via an endoglycosidic activity. These processes occur with rates comparable to those in normal fibroblasts. The data are consistent with the hypothesis that the glycosaminoglycan chains of cell-surface proteoglycans are separated from the protein cores in a nonlysosomal compartment prior to the transport of these chains to lysosomes for degradation. These observations also raise the possibility that this early step in separation of glycosaminoglycan chains from protein cores may serve to regulate the levels of glycosaminoglycan-free core protein observed in various cells. 相似文献
5.
N Asuwa 《Virchows Archiv. B, Cell pathology including molecular pathology》1988,55(6):345-354
Full thickness rabbit skin explants were cultured on plastic dish for 1 week and the sequential morphological changes were examined daily by light and electron microscopy. During the cultured period, bundles of dermal collagen fibres gradually loosened and were removed from the upper dermis and from the cut margin of the explant, which was covered by a sheet of migrating epidermal cells. In these areas, cells containing phagocytosed collagen fibrils were observed from the 3rd day to the end of the culture period. These cells containing phagocytosed collagen fibrils included dermal fibroblasts and macrophages, epidermal keratinocytes and endothelial cells lining blood vessels. The presence of acid phosphatase activity in vacuoles containing the collagen fibrils suggested that intracellular degradation of collagen was occurring. In addition, extracellular collagen degradation was recognized around fibroblasts and beneath the migrating epidermis by the high collagenolytic activity at these sites. These findings suggest that both intra- and extracellular collagen degradation may participate in collagen removal from dermal connective tissue in cultured skin explants. 相似文献
6.
J C Monboisse M Gardès-Albert A Randoux J P Borel C Ferradini 《Biochimica et biophysica acta》1988,965(1):29-35
Delipidated collagen fibrils reconstituted from acid-soluble calf skin collagen, suspended in 50 mM phosphate buffer, pH 7.4, containing 100 mM sodium formate, were submitted to pulse radiolysis in Febetron devices or to gamma radiolysis in a 60Co irradiator. A collagen degradation process was found. The kinetics of this degradation was followed by evaluation of the amount of 4-hydroxyproline present in the small peptides liberated during the irradiation period. The yield of 4-hydroxyproline small peptides was low (0.1 mol/100 eV for an initial collagen concentration 3.2 microM). It increased linearly with the dose of irradiation and the concentration of collagen in suspension. The kinetic competition between O2-. dismutation and O2-. reaction with collagen was studied by pulse radiolysis at several concentrations of collagen. A value of the kinetic constant of k(O2-. + collagen) = 4.8 . 10(6) mol-1.l.s-1 was determined. 相似文献
7.
8.
9.
A S Naeem Y Zhu W L Di S Marmiroli R F L O'Shaughnessy 《Cell death and differentiation》2015,22(12):2123-2132
Nuclear degradation is a key stage in keratinocyte terminal differentiation and the formation of the cornified envelope that comprises the majority of epidermal barrier function. Parakeratosis, the retention of nuclear material in the cornified layer of the epidermis, is a common histological observation in many skin diseases, notably in atopic dermatitis and psoriasis. Keratinocyte nuclear degradation is not well characterised, and it is unclear whether the retained nuclei contribute to the altered epidermal differentiation seen in eczema and psoriasis. Loss of AKT1 function strongly correlated with parakeratosis both in eczema samples and in organotypic culture models. Although levels of DNAses, including DNase1L2, were unchanged, proteomic analysis revealed an increase in Lamin A/C. AKT phosphorylates Lamin A/C, targeting it for degradation. Consistent with this, Lamin A/C degradation was inhibited and Lamin A/C was observed in the cornified layer of AKT1 knockdown organotypic cultures, surrounding retained nuclear material. Using AKT-phosphorylation-dead Lamin A constructs we show that the retention of nuclear material is sufficient to cause profound changes in epidermal terminal differentiation, specifically a reduction in Loricrin, Keratin 1, Keratin 10, and filaggrin expression. We show that preventing nuclear degradation upregulates BMP2 expression and SMAD1 signalling. Consistent with these data, we observe both parakeratosis and evidence of increased SMAD1 signalling in atopic dermatitis. We therefore present a model that, in the absence of AKT1-mediated Lamin A/C degradation, DNA degradation processes, such as those mediated by DNAse 1L2, are prevented, leading to parakeratosis and changes in epidermal differentiation.Nuclear degradation is a key stage in keratinocyte terminal differentiation and the formation of the cornified envelope that comprises the majority of epidermal barrier function.1, 2, 3 Parakeratosis, the retention of nuclear material in the cornified layer of the epidermis, is a common histological observation in many skin diseases, but most notably in the epidermal barrier-defective diseases eczema and psoriasis.4, 5 Mechanisms of nuclear degradation in the epidermis have not yet been well characterised and it is not known whether the retained nuclei contribute to the altered epidermal differentiation programmes seen in these skin diseases.6, 7It is surprising that, for such a critical component of epidermal terminal differentiation, relatively few molecular mechanisms inducing parakeratosis have been investigated. The caspase-14 knockout mouse develops parakeratotic plaques upon chemical barrier disruption8 and has subtle defects in epidermal terminal differentiation, including filaggrin processing,9 whereas the DNAse 1L2 knockout mouse showed constitutive nuclear retention in hair and nails, which led to structural abnormalities in the hair shaft.10, 11 Parakeratosis also occurs during wound healing.12 Nuclei are retained in the scab of healing wounds, and this correlates with the expression of different keratins and altered structural protein expression in this region.13Although taken together this is suggestive that retained nuclei can influence epidermal and adnexal differentiation by signalling to these structures, there is no direct evidence that this is the case. We have already identified AKT1 as an important signalling molecule in epidermal terminal differentiation. Loss of AKT1 causes cornified envelope fragility, and reduces the barrier function of the cornified layer.14, 15 We therefore wanted to test the hypothesis that AKT1 caused this fragility by preventing nuclear degradation in the cornified layer. Organotypic culture of keratinocytes, in which AKT1 has been silenced by specific shRNA, retained nuclei in the cornified layer. We show here that shRNA knockdown (kd) of AKT1 prevents phosphorylation and subsequent degradation of nuclear lamins. Furthermore, expression of non-degradable lamins leads to upregulation of BMP2-SMAD1-mediated signalling and keratinocyte terminal differentiation changes. 相似文献
10.
Saposin C is required for normal resistance of acid beta-glucosidase to proteolytic degradation 总被引:2,自引:0,他引:2
Saposins (A, B, C, and D) are small sphingolipid activator proteins that are derived by proteolytic processing of a common precursor, prosaposin. In the lysosomal sphingolipid degradation pathway, acid beta-glucosidase (GCase) requires saposin C for optimal in vitro and in vivo hydrolysis of glucocerebroside. The deficiency of prosaposin/saposins (PS-/-) in humans and mice leads to a decrease of GCase activity in selected tissues. Concordant decreases (>50%) of GCase protein and in vitro activity were detected in extracts of cultured fibroblasts and hepatocytes from PS-/- mice and human prosaposin-deficient fibroblasts. GCase RNA in the PS-/- cells was at wild-type levels. Compared with that in wild-type cells (t(1/2) >24 h), the GCase protein in the PS-/- cells had a faster disappearance rate (t(1/2) approximately 1 h in mouse and approximately 8 h in human) as determined by metabolic labeling and immunoprecipitation with anti-GCase antibodies. Treatment of PS-/- cells with leupeptin, an inhibitor of cysteine proteases, led to significant increases (approximately 2-fold) in GCase protein and in vitro activity. Loading saposin C to human PS-/- fibroblasts resulted in an enhancement of GCase protein and in vitro activity. Saposin D loading had no effect. These data indicate that saposin C is required for GCase resistance to proteolytic degradation in the cell. Thus, diminished in vivo GCase activity would be greater than expected only from the lack of GCase activation by saposin C. These results indicate a new property for saposin C, an anti-proteolytic protective function toward GCase. 相似文献
11.
Collagen synthesis by normal and bromodeoxyuridine-modulated cells in myogenic culture 总被引:8,自引:0,他引:8
B H Lipton 《Developmental biology》1977,61(2):153-165
Connective tissue appears to play an important role in the development, function, and pathology of vertebrate skeletal muscle. In order to analyze the source of the extracellular matrix in developing muscle, hydroxyproline assays and fine-structure analyses were made on clonal cultures derived from embryonic musculature. The cells in fibroblast cultures synthesized and accumulated an extensive extracellular matrix of nonstriated reticular-like microfibrils. In myoblast cultures, no extracellular matrix was evident by electron microscopy, although hydroxyproline assays demonstrated that the cells synthesized and released a soluble collagenous protein into the medium. When grown with fibroblasts, multinucleated myofibers exhibited a complete basement membrane consisting of both basal and reticular laminae. Bromodeoxyuridine-treated myoblasts, in addition to exhibiting morphological and cytological alterations, synthesized and elaborated an extracellular matrix identical to that in fibroblast cultures. The potential for a similar alteration or “modulation” of myoblast expression in situ is discussed in regard to its possible relation to fibrosis in muscular dystrophy. 相似文献
12.
C Greve W Opsahl K Reiser U Abbott C Kenney D Benson R Rucker 《Biochimica et biophysica acta》1988,967(2):275-283
The amounts of lysine-derived crosslinks in collagens from tendon, cartilage, intervertebral disc, and bone and changes in the composition of sternal cartilage glycosaminoglycans were estimated in two lines of chickens, a control-isogenic line and a line that develops scoliosis. In the scoliotic line, scoliosis first appears at 3-4 weeks and progressively increases in severity and incidence so that 90% of the birds express the lesion by week 10. We have reported previously that cartilage, tendon, and bone collagens from scoliotic birds are more soluble than corresponding collagens from normal birds. Herein, collagen crosslinking and altered proteoglycan metabolism are examined as possible mechanisms for the differences in collagen solubility. At 1 week of age there were fewer reducible crosslinking amino acids (hydroxylysinonorleucine, dihydroxylysinonorleucine, and lysinonorleucine) in collagens from sternal cartilage and tendon in the scoliotic line than in the isogenic line. However, by week 3 and at weeks 5 or 7 values were similar in both groups. The amounts of hydroxypyridinium in vertebral bone and intervertebral disc collagen were also similar in both groups of birds. Consequently, differences in collagen crosslinking do not appear to be a persistent developmental defect underlying the expression of scoliosis in the model. However, differences were observed in cartilage proteoglycans and glycosaminoglycans from the scoliotic line that were not present in cartilage from the isogenic line. The average molecular weight of the uronide-containing glycosaminoglycans was 30% less in the scoliotic line than in the isogenic line, i.e., 12,000 compared to 18,000. The size distribution of cartilage proteoglycans from the scoliotic line also differed from that of proteoglycans from the isogenic line.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Intervertebral discs of the cervical-thoracic region of the spine of BDL mice which are homozygous for the ky gene mutation undergo degeneration. Discs from these mice have a normal collagen content and undergo normal collagen cross linking prior to the appearance of degenerative changes. The major reducible collagen cross-link formed in discs of these mice and in normal CBA strain mice is hydroxylysino-5-ketonorleucine. These results and other previous results indicate that the discs in the ky mouse develop degenerative disease due to an extrinsic factor rather than to an intrinsic abnormality of their extracellular matrix. The extrinsic factor has been identified as spinal muscle atrophy. 相似文献
14.
15.
Collagen in its fibrillar state is protected from glycation 总被引:1,自引:0,他引:1
Slatter DA Avery NC Bailey AJ 《The international journal of biochemistry & cell biology》2008,40(10):2253-2263
To assess the impact collagen structures may have on glycation, the effects of glucose upon bovine serum albumin, guinea pig skin collagen, rat tail tendon and monomeric collagen were compared under near physiological conditions. Proteins were incubated with or without 50 mM glucose for 64 d in pH 7.4 50 mM phosphate buffer, followed by reduction, acid/alkaline hydrolysis, and analysis. Yields of non-reducible fructose-lysine, in the form of the acid-degradation products furosine and pyridosine, were significantly higher from skin collagen when compared to albumin. Yields of reducible fructose-lysine, in the form of glucitol- and mannitol-lysine, were conversely much greater for albumin, while tail tendon reported intermediate values. Fructose-lysine and unmodified lysine within collagen fibres prior to incubation was therefore protected by the tight packing of the collagen helices, where milling of tail tendon to increase the surface area exposed much of it to reduction protocols. Together with an analysis of pentosidine formation and other products, these results have shown that the interior of the tightly packed skin collagen fibres is protected from both glycation and reduction, and that glycation products differ depending on the protein incubated. Amino acid analysis then showed that our glycated skin collagen was similar to human diabetic skin collagen. Significant quantities of glucose-independent unknowns form in control incubations; their composition again being protein-dependent. The four compound Ks as previously reported were found to be unique to glycated rat tail tendon and soluble collagen, while another glycation product detected in collagen but not albumin may be attributable to carboxymethyl-arginine. 相似文献
16.
van Kuilenburg AB van Lenthe H van Gennip AH 《Nucleosides, nucleotides & nucleic acids》2006,25(9-11):1211-1214
In this study, we measured the activity of dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP) and beta-ureidopropionase (beta-UP), using radiolabeled substrates, in 16 different tissues obtained at autopsy from a single patient. The activity of DPD could be detected in all tissues examined, with the highest activity being present in spleen and liver. Surprisingly, the highest activity of DHP was present in kidney followed by that of liver. Furthermore, a low DHP activity could also be detected in 8 other tissues. The highest activity of beta-UP was detected in liver and kidney. However, low UP activities were also present in 8 other tissues. Our results demonstrated that the entire pyrimidine catabolic pathway was predominantly confined to the liver and kidney. However, significant residual activities of DPD, DHP and beta-UP were also present in a variety of other tissues, especially in bronchus. 相似文献
17.
B. D. Smith D. Biles W. Gonnerman B. Faris A. Levine N. Capparell F. Moolten C. Franzblau 《In vitro cellular & developmental biology. Plant》1979,15(6):455-462
Summary Collagen synthesis in normal BHK 21/cl 13 and chemically transformed temperature-sensitive BHK 21/cl 13 cells (Me2N4) was assessed by examination of hydroxyproline formation and collagenase-susceptible protein. The Me2N4 cells lost their ability to synthesize collagen at both permissive and nonpermissive temperatures for transformation. These
conclusions were confirmed by polyacrylamide-gel electrophoresis and CM-cellulose chromotography. Prolyl hydroxylase activity
was present in both normal and transformed cells even when no collagen could be demonstrated. The production of noncollagen
protein, although decreased in the transformed cell, did not change as drastically as the collagen synthesis.
This paper was supported in part by a grant from the Public Health Service (AG00001), and by the Medical Research Service
of the Veterans Administration. 相似文献
18.
Bhide VM Laschinger CA Arora PD Lee W Hakkinen L Larjava H Sodek J McCulloch CA 《The Journal of biological chemistry》2005,280(24):23103-23113
Decorin is a small, leucine-rich proteoglycan that binds to collagen and regulates fibrillogenesis. We hypothesized that decorin binding to collagen inhibits phagocytosis of collagen fibrils. To determine the effects of decorin on collagen degradation, we analyzed phagocytosis of collagen and collagen/decorin-coated fluorescent beads by Rat-2 and gingival fibroblasts. Collagen beads bound to gingival cells by alpha2beta1 integrins. Binding and internalization of decorin/collagen-coated beads decreased dose-dependently with increasing decorin concentration (p < 0.001). Inhibition of binding was sustained over 5 h (p < 0.001) and was attributed to interactions between decorin and collagen and not to decorin-collagen receptor interactions. Both the non-glycosylated decorin core protein and the thermally denatured decorin significantly inhibited collagen bead binding (approximately 50 and 89%, respectively; p < 0.05). Mimetic peptides corresponding to leucine-rich repeats 1-3, encompassed by a collagen-binding approximately 11-kDa cyanogen bromide fragment of decorin and leucine-rich repeats 4 and 5, previously shown to bind to collagen, were tested for their ability to inhibit collagen bead binding. Although the synthetic peptide 3 alone exhibited saturable binding to collagen, neither peptides 3 nor 1 and 2 markedly inhibited phagocytosis. Leucine-rich repeat 3 bound to a triple helical peptide containing the alpha2 integrin-binding site of collagen. When collagen beads were co-incubated with peptides 3 and 4, inhibition of collagen phagocytosis (55%) was equivalent to intact native/recombinant core protein. Thus a novel collagen binding domain in decorin acts cooperatively with leucine-rich repeat 4 to mask the alpha2beta1 integrin-binding site on collagen, an important sequence for the phagocytosis of collagen fibrils. 相似文献
19.
Nonenzymatic glycosylation of albumin was associated with an increased catabolic rate and decreased protein half-life in both normal and diabetic animals. The fractional catabolic rate of glycosylated albumin was increased significantly over albumin, from 0.100 +/- 0.004/day to 0.131 +/- 0.007/day in normal animals and from 0.104 +/- 0.004/day to 0.138 +/- 0.007/day when these animals were made diabetic with alloxan. The half-lives of Alb and GlyAlb in normal dogs were 6.81 +/- 0.12 days and 4.97 +/- 0.21 days, respectively. In diabetic animals, the half-lives of Alb and GlyAlb were 7.48 +/- 0.21 and 5.21 +/- 0.24 days, respectively. The increased catabolism of GlyAlb may reflect chronic increased extravasation of glycosylated plasma proteins, which are known to be increased in diabetes, into the microvascular wall. 相似文献