首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.  相似文献   

4.
Chromosomes occupy distinct territories in the interphase cell nucleus. These chromosome territories are non-randomly arranged within the nuclear space. We are only just uncovering how chromosome territories are organized, what determines their position and how their spatial organization affects the expression of genes and genomes. Here, we discuss emerging models of non-random nuclear chromosome organization and consider the functional implications of chromosome positioning for gene expression and genome stability.  相似文献   

5.
Recent systematic studies using newly developed genomic approaches have revealed common mechanisms and principles that underpin the spatial organization of eukaryotic genomes and allow them to respond and adapt to diverse functional demands. Genomes harbor, interpret, and propagate genetic and epigenetic information, and the three-dimensional (3D) organization of genomes in the nucleus should be intrinsically linked to their biological functions. However, our understanding of the mechanisms underlying both the topological organization of genomes and the various nuclear processes is still largely incomplete. In this essay, we focus on the functional relevance as well as the biophysical properties of common organizational themes in genomes (e.g. looping, clustering, compartmentalization, and dynamics), and examine the interconnection between genome structure and function from this angle. Present evidence supports the idea that, in general, genome architecture reflects and influences genome function, and is relatively stable. However, the answer as to whether genome architecture is a hallmark of cell identity remains elusive.  相似文献   

6.
Beyond the sequence: cellular organization of genome function   总被引:30,自引:0,他引:30  
Misteli T 《Cell》2007,128(4):787-800
Genomes are more than linear sequences. In vivo they exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. I discuss here the functional relevance of spatial and temporal genome organization at three hierarchical levels: the organization of nuclear processes, the higher-order organization of the chromatin fiber, and the spatial arrangement of genomes within the cell nucleus. Recent insights into the cell biology of genomes have overturned long-held dogmas and have led to new models for many essential cellular processes, including gene expression and genome stability.  相似文献   

7.
8.
9.
Higher order chromatin structure, i.e. the three-dimensional (3D) organization of the genome in the interphase nucleus, is an important component in the orchestration of gene expression in the mammalian genome. In this review we describe principles of higher order chromatin structure discussing three organizational parameters, i.e. chromatin folding, chromatin compaction and the nuclear position of the chromatin fibre. We argue that principles of 3D genome organization are probabilistic traits, reflected in a considerable cell-to-cell variation in 3D genome structure. It will be essential to understand how such higher order organizational aspects contribute to genome function to unveil global genome regulation.  相似文献   

10.
For quite a few chromosomes more: the origin of eukaryotes…   总被引:1,自引:0,他引:1  
  相似文献   

11.
The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.  相似文献   

12.
13.
Advances in imaging the interphase nucleus using thin cryosections   总被引:2,自引:2,他引:0  
The mammalian genome is partitioned amongst various chromosomes and encodes for approximately 30,000 protein-coding genes. Gene expression occurs after exit from mitosis, when chromosomes partially decondense within the cell nucleus to allow the enzymatic activities that work on chromatin to access each gene in a regulated fashion. Differential patterns of gene expression evolve during cell differentiation to give rise to the over 200 cell types in higher eukaryotes. The architectural organisation of the genome inside the interphase cell nucleus, and associated enzymatic activities, reveals dynamic and functional compartmentalization of the genome. In this review, I highlight the advantages of Tokuyasu cryosectioning on the investigation of nuclear structure and function. Robert Feulgen Prize 2007 Winner lecture presented at the 49th Symposium of the Society for Histochemistry in Freiburg i.Br., Germany, 26–29 September 2007.  相似文献   

14.
15.
The eukaryotic cell nucleus displays a high degree of spatial organization, with discrete functional subcompartments that provide microenvironments where specialized processes take place. Concordantly, the genome also adopts defined conformations that, in part, enable specific genomic regions to interface with these functional centers. Yet the roles of many subcompartments and the genomic regions that contact them have not been explored fully. More fundamentally, it is not entirely clear how genome organization impacts function, and vice versa. The past decade has witnessed the development of a new breed of methods that are capable of assessing the spatial organization of the genome. These stand to further our understanding of the relationship between genome structure and function, and potentially assign function to various nuclear subcompartments. Here, we review the principal techniques used for analyzing genomic interactions, the functional insights they have afforded and discuss the outlook for future advances in nuclear structure and function dynamics.  相似文献   

16.
Higher eukaryotic genomes contain both housekeeping genes and genes of which the expression is restricted to a defined time and space. It is well established that a correlation exists between structural organization of the genome and gene expression control. The functional mechanisms underlying this correlation are still poorly understood. Here I describe several observations that are the basis of present concepts of genome organization and nuclear architecture related to functionality. Regarding the relationship between positioning and disturbed cell functionality, I describe observations showing that the proximity of selected gene loci is statistically correlated with their propensity for oncogenic translocations as well as observations of patterns occurring in neurodegenerative disorders where unstable repeats are translated into an expanded polyglutamine tract. Such observations underscore the importance to understand how genetic perturbations lead to the global reorganization of nuclear architecture, chromatin structure and widespread changes in gene expression.  相似文献   

17.
The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.  相似文献   

18.
19.
20.
Many studies are devoted to the analysis of interphase chromosome architecture due to the evidence of the functional-dependent spatial organization of the genome. These studies are based on classical cytological methods, as well as on biochemical approaches (3C, 4C, 5C, Hi-C), which allow one to detect long-range interactions between fragments of chromatin fibril, including the genome-wide interactions. In this review, we discuss the results of these projects, which allow us to explain the functional basis of nucleus multilevel compartmentalization and to identify the principles of high-level chromatin organization. Special attention is paid to the enhancer-promoter interactions, which are important for the regulation of gene expression. In this regard, we provide a new interpretation to the model of an active chromatin hub and to the alternative model of an active chromatin compartment, which was proposed during reconsideration of some steps of the 3C procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号