首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallinity of bone mineral and disorder of the crystal at different ages were measured by the X-ray diffraction method of Ruland. Measurements were made on femoral mid-diaphyses of Wistar rat from 2 weeks to 1 year of age. For a given animal age, the crystallinity of bone mineral increases with age, while the overall disorder of the crystal does not vary within experimental accuracy. The increase in the crystallinity with age is attributed to an increase in crystallite size, a decrease in lattice imperfections, or a combination of both effects. It is suggested that lattice imperfections of the first kind more largely contributes to the disorder of bone mineral crystals than those of the second kind.  相似文献   

2.
Bone tissue is a composite material composed of hydroxyapatite (HAp) and collagen matrix. As HAp is a crystalline structure, an X-ray diffraction method is available to measure the lattice strain of HAp crystals. However, mineral particles of HAp in bone have much lower crystallinity than usual crystalline materials, which show a diffusive intensity profile of X-ray diffraction. It is not easy to determine quantitatively an infinitesimal strain of HAp from the peak position of diffusive profile. In order to improve the accuracy of strain measurement of HAp in bone tissue and to obtain reproducible results, this paper proposes an X-ray diffraction method applied to a diffusive profile for low crystallinity. This method is to estimate the lattice strain of HAp using not a peak position but a whole diffraction profile. In this experiment, a strip specimen of 28 x 8 x 2 mm was made from bone axial, outside circumferential and cross-sectional circumferential region in the cortical bone of bovine femur. The X-ray diffraction measurements were carried out before and after applying an external load. As a result, the precision of strain measurement was much improved by this method. Although a constant value of macroscopic strain was applied in the specimen, the lattice strain had a lower value than the macroscopic strain and had a different value in each specimen.  相似文献   

3.
Measurements of bone mineral content and composition in situ provide insight into the chemistry of bone mineral deposition. Infrared (IR) micro-spectroscopy is well suited for this purpose. To date, IR microscopic (including imaging) analyses of bone apatite have centered on the nu(1),nu(3) PO(4)(3-) contour. The nu(4) PO(4)(3-) contour (500-650 cm(-1)), which has been extensively used to monitor the crystallinity of hydroxyapatite in homogenized bone samples, falls in a frequency region below the cutoff of the mercury-cadmium-telluride detectors used in commercial IR microscopes, thereby rendering this vibration inaccessible for imaging studies. The current study reports the first IR micro-spectroscopy spectra of human iliac crest cross sections in the nu(4) PO(4)(3-) spectral regions, obtained with a synchrotron radiation source and a Cu-doped Ge detector coupled to an IR microscope. The acid phosphate (HPO(4)(2-)) content and mineral crystallite perfection (crystallinity) of a human osteon were mapped. To develop spectra-structure correlations, a combination of X-ray powder diffraction data and conventional Fourier transform IR spectra have been obtained from a series of synthetic hydroxyapatite crystals and natural bone powders of various species and ages. X-ray powder diffraction data demonstrate that there is an increase in average crystal size as bone matures, which correlates with an increase in the nu(4) PO(4)(3-) FTIR absorption peak ratio of two peaks (603/563 cm(-1)) within the nu(4) PO(4)(3-) contour. Additionally, the IR results reveal that a band near 540 cm(-1) may be assigned to acid phosphate. This band is present at high concentrations in new bone, and decreases as bone matures. Correlation of the nu(4) PO(4)(3-) contour with the nu(2) CO (3)(2-) contour also reveals that when acid phosphate content is high, type A carbonate content (i.e., carbonate occupying OH(-) sites in the hydroxyapatite lattice) is high. As crystallinity increases and acid phosphate content decreases, carbonate substitution shifts toward occupation of PO(4)(3-) sites in the hydroxyapatite lattice. Thus, IR microscopic analysis of the nu(4) PO(4)(3-) contour provides a straightforward index of both relative mineral crystallinity and acid phosphate concentration that can be applied to in situ IR micro-spectroscopic analysis of bone samples, which are of interest for understanding the chemical mechanisms of bone deposition in normal and pathological states.  相似文献   

4.
The small-angle X-ray scattering method has been applied to evaluate various macromolecular parameters such as the specific inner surface, the transversal lengths, the length of crystallinity, the range of amorphous zone and the percentage of porosity in pure human bone and osteomyelitis, an infection of bone tissue. The hydroxyapatite crystals of bone being uniformly dispersed throughout the hydrated collagenous matrix creating a large mineral matrix interface, we found the bone samples to behave as a densely packed two phase system. The theories of Kratky and Porod have been utilized to evaluate the macromolecular parameters. These findings may shed light on tertiary structural deformation of human bone when it is infected.  相似文献   

5.
A detailed characterization of the main types of blue agave bagasse (BAB) obtained from the four largest tequila factories in the State of Jalisco (Mexico) is presented here. After milling/sieving the agave bagasses, two particle size fractions were identified, one rich in fibers and the other consisting of dust/fine particles. Both fractions were analyzed to determine the content of cellulose, hemicellulose, lignin, organic-soluble compounds, absorbed remaining sugars, minerals, and organic matter. After detailed analyses of both fractions by wet, thermal (thermo-gravimetric analysis (TGA)/differential thermo-gravimetric analysis (DTA)), and other methods (high-performance liquid chromatography (HPLC), microscopy, particle size by laser diffraction light scattering, and crystallinity by X-ray diffraction), a moderate-to-intensive method was devised for further processing the fibrous fraction, which had a high crystalline cellulose content, as well as for its subsequent enzymatic saccharification under well-defined moderate conditions. Alternative processing options were also devised for the dust/fine particle fraction, which has a moderate crystalline cellulose that is rich in adsorbed sugars and that has a high mineral matter content.  相似文献   

6.
Summary The electron spin resonance (ESR) technique is proposed as a microchemical and/or histochemical method in research on mineralized tissues.It has been described in previous papers that ionizing radiation evokes stable paramagnetic centres in the crystalline fraction of mineral constituents of calcified tissues. These centres were used as a label in studies on resorption and creeping substitution of bone grafts.In this paper the sensitivity of the method and its application for determination of the crystallinity of various mammalian tissues were described.It was shown that: a) three single Haversian systems (osteons) isolated from a ca. 100 m thick undecalcified section of human compact bone weighing around 10–4 g could be measured by the ESR technique; b) the crystallinity of mineral constituents of normal and pathological calcified tissues could be estimated as the ratio of the concentration of stable paramagnetic centres to the total ash content.Comparative ESR measurements were performed on compact bone of various mammalian species, human enamel and dentin, as well as on ageing bovine cartilage and atherosclerotic human aortas.  相似文献   

7.

Objectives:

We recently introduced a new methodology called quantitative X-ray imaging (qXRI) to investigate bone mineral density in isolated rodent bones. The aims of the present study were to compare DXA and microCT with qXRI in a rat model of disuse osteoporosis.

Methods:

Fourteen Copenhagen rats were injected with a single dose of botulinum toxin (BTX - 2 UI) in the right Mus quadriceps femoris. The left hindlimb serves as control. Areal BMD and vBMD were determined with a Hologic Discovery-W device and a Skyscan 1172 microcomputed tomograph (microCT). Absorbing material density (AMD) was determined on digitized X-ray images obtained with a Faxitron M020 device.

Results:

All three methods highlighted significant lower values for aBMD, vBMD and AMD in trabecular and cortical bone in the BTX-injected side. In trabecular bone, aBMD, vBMD and AMD were significantly correlated with BV/TV. In cortical bone, only aBMD and vBMD were significantly correlated with cortical bone mass On the other hand, only AMD was significantly correlated with the mechanical parameters bending strength and bending modulus.

Conclusions:

qXRI is a rapid and cheap method to assess trabecular bone mass in isolated rodent bones and can be used as a surrogate for the densitometry of small animals.  相似文献   

8.
Long-term cadmium exposure may cause bone loss in distal or proximal sites in the forearm. In this study, we observed the effects of cadmium on bone mineral density in both distal and proximal sites in the forearm in two female populations. A total of 456 women living in two different areas participated. All of the participants completed a questionnaire, and the bone mineral density was measured in both the distal and proximal forearm by dual-energy X-ray absorptiometry. Urine samples were collected for the determination of urinary cadmium (UCd). UCd levels were significantly higher in the polluted group than the control group. The bone mineral density of the proximal forearm of subjects in polluted group or with high UCd levels was significantly lower than that of subjects in the control group or with low UCd levels. However, regarding bone mineral density of the distal forearm, this trend was only found in subjects living in area A. Our data showed that cortical bone mineral density in the forearm may be more strongly affected by cadmium exposure than trabecular bone mineral density.  相似文献   

9.
An orientation of hydroxyapatite (HAP) crystals in bovine femur mineral was investigated by means of X-ray pole figure analysis (XPFA). It was found that the c-axis of HAP generally orients parallel to the longitudinal axis of bone (bone axis) and a significant amount of c-axis was oriented in other directions, in particular, perpendicular to the bone axis. Comparing these results with those of the small angle X-ray scattering (SAXS) investigation by Matsushima et al. (Jap. J. appl. Phys. 21, 186-189, 1982) at least two types of morphology of bone mineral were found; rod like bone mineral having the c-axis of HAP crystal parallel to the longitudinal axis of the rod and that having the c-axis not parallel, in a particular case, perpendicular to its longitudinal axis. Transverse anisotropy in mechanical properties of bone was reproduced by the estimation of Young's moduli by using the structural results mainly from XPFA. It is concluded that the anisotropy in mechanical properties of bone is well explained by taking account of the non-longitudinal (off-bone) axial distribution of orientation of bone mineral.  相似文献   

10.
Summary TEM, SEM and X-ray diffraction analysis demonstrate the heterogeneity of the dentinal tissue of Anarhichas lupus, a vascular osteodentine. The disordered aspect of collagen fibres, incompletely mineralized (the periodical striation being still visible), explains the scattered distribution of crystallites since they are responsible for their arrangement. The low degree of mineralization revealed by the visible collagen striation is confirmed by X-ray diffraction analysis (the crystallinity of vascular osteodentine being much lower than that of the peripheral dental tissue) as well as by high resolution TEM, since no lattice planes could be observed. Osteodentine, supporting bone and proper bone have in common a mineral phase, more or less organized, different from the apatite system.The authors thank Mireille Cottrel-Gengoux for her technical assistance  相似文献   

11.
Non-invasive dual energy methods have been used extensively on osteoporosis diagnosis estimating parameters, such as, Bone Mineral Density (BMD) and Bone Mineral Content (BMC). In this study, an X-ray dual energy method (XRDE) was developed for the estimation of the bone Calcium-to-Phosphorous (Ca/P) mass ratio, as a bone quality index. The optimized irradiation parameters were assessed by performing analytical model simulations. X-ray tube output, filter material and thickness were used as input parameters. A single exposure technique, combined with K-edge filtering, was applied. The optimal X-ray spectra were selected according to the resulted precision and accuracy values. Experimental evaluation was performed on an XRDE system incorporating a Cadmium Telluride (CdTe) photon counting detector and three bone phantoms with different nominal mass Ca/P ratios. Additionally, the phantoms’ mass Ca/P ratios were validated with energy-dispersive X-ray spectroscopy (EDX). Simulation results showed that the optimum filter atomic number (Z) ranges between 57 and 70. The optimum spectrum was obtained at 100 kVp, filtered with Cerium (Ce), with a surface density of 0.88 g/cm2. All Ca/P ratio measurements were found to be accurate to within 1.6% of the nominal values, while the precision ranged between 0.91 and 1.37%. The accuracy and precision values of the proposed non-invasive method contributes to the assessment of the bone quality state through the mass Ca/P ratio determination.  相似文献   

12.
古人类骨中羟磷灰石的XRD和喇曼光谱分析   总被引:16,自引:0,他引:16  
人骨残骸是生物考古的主要对象,而骨骼污染鉴别是样品选择的依据,也是生物考古的前提。利用X射线衍射(XRD)和喇曼光谱相结合的方法,通过对新疆克雅河圆沙古城遗传出土的人类骨骼中羟磷灰石的分析,来辨析骨骼污染程度。研究结果表明,两种方法的有机结合,准确反映了骨骼中羟磷石结晶度的变化,从而可简单、较为有效地鉴别古代人类骨骼样品的污染。  相似文献   

13.
Angular dependent Young's modulus E phi presented by Bonfield and Grynpas [Nature 270, 453-454 (1977)] was simulated by using the distribution function of the orientation of mineral in plexiform bone introduced on the basis of an X-ray pole figure analysis (XPFA) and a small angle X-ray scattering (SAXS) results. Calculations were performed with the aid of a simple model which expresses well the geometrical characteristic of plexiform bone. Estimated angular dependent Young's modulus in terms of the distribution of mineral orientation reproduced the experimental results. The suitable aspect ratio of bone mineral for the reproduction of the empirical data was a reasonable value compared with the morphological study of bone mineral. It is concluded that the angular dependence of mechanical properties of plexiform bone is explained by the distribution of bone mineral orientation and its morphology.  相似文献   

14.
Force constant values for thermal vibrational motion of a collagen molecule along the helix axis in tendon, completely demineralized bone (CDB), and partially demineralized bone (PDB) were estimated by determining the Debye–Waller factor (DW factor) for the diffracted X-ray intensity from these specimens. The DW factor for nominal value of 0.286 nm meridional diffraction representing a period along the helical axis of a collagen molecule was measured. As the atomic scattering factor of mineral constituents is much larger than that of collagen, it is difficult to detect the diffraction from collagen in bone specimen. Therefore, PDB was used in this study. In order to compare obtained force constant value for CDB with mechanical properties of collagen in the literature, the value was translated into Young's modulus value using the cross-sectional area of a collagen molecule. In the case of collagen in PDB, i.e., collagen with the close presence of HAp mineral particles, as the DW factor of the diffracted intensity by hydroxyapatite (HAp) was considered to be negligible compared with that of collagen, the DW factor determined was interpreted as that of collagen molecule in PDB specimen. The force constant value obtained for collagen in PDB was significantly larger than that of collagen in CDB. This result was thought to be a manifestation of the hardening of collagen matrix in bone by HAp mineral particles and the first straightforward evidence for a difference in collagen properties depending on the presence of HAp mineral particles. The method employed in this study can be utilized for detecting mechanical properties of the individual constituents of composite materials.  相似文献   

15.
The development of consistent procedures with the inclusion of patient-specific data is essential in the computational modeling of biological processes, in order to achieve clinical relevant data. In this work, these issues are addressed with the development of a methodology that combines the gold standard technique for bone mineral density measurement and osteoporosis diagnosis, Dual energy X-ray absorptiometry (DXA), with a computational model for bone remodeling simulation. The DXA results were divided in three samples constituted from proximal femur DXA exams of patients in different stages of bone mineral density (normal, osteopenia and osteoporosis). These results were quantitatively compared with computational model results. A correlation study was performed between femoral neck T-score and a parameter from the model to ascertain the hypothesis of adjusting the model accordingly to biological variables. The results evidenced the predictive ability of the computational model in the estimation of femoral neck bone mineral content (BMC), with a maximum relative error of 3.92%. On the other hand, a strong correlation (R=?0.862) was found between the variables in study and a mathematical relationship was obtained to estimate the range of values for a model parameter that leads to biological relevant results. The methodology developed and the results obtained represent a solid and reliable basis to further studies on bone quality, ensuring the validity of the computational model in the simulation of bone remodeling process.  相似文献   

16.
Spectroscopic characterization of poplar wood samples with different crystallinity indices, lignin contents, and acetyl contents was performed to determine changes in the biomass spectra and the effects of these changes on the hydrolysis yield. The spectroscopic methods used were X-ray diffraction for determining cellulose crystallinity (CrI), diffuse reflectance infrared (DRIFT) for changes in C-C and C-O bonds, and fluorescence to determine lignin content. Raman spectroscopy was also used to determine its effectiveness in the determination of crystallinity and C-C and C-O bond changes in the biomass as a complement to better-known methods. Changes in spectral characteristics and crystallinity were statistically correlated with enzymatic hydrolysis results to identify and better understand the fundamental features of biomass that influence enzymatic conversion to monomeric sugars. In addition, the different spectroscopic methods were evaluated separately to determine the minimum amount of spectroscopic data needed to obtain accurate predictions. The principal component regression (PCR) model with only the DRIFT data gives the best correlation and prediction for both initial rate of hydrolysis and also the 72-h hydrolysis yield. The factor that most affects both the initial rate and the 72-h conversion is the O-H bond content of the sample, which directly relates to the breakage of structural carbohydrates into smaller molecules.  相似文献   

17.
The linguloid brachiopod shell family has been the focus of several studies because of the similarity in the composition of the mineral phase of these shells to that of human bone. However, ultrastructural features of Lingula shells have not yet been fully demonstrated at high magnification using Transmission Electron Microscopy (TEM) and Electron Diffraction. Ultrastructural characterization of the mineral phase in Lingula shells will improve our understanding of the biomineralization processes and mineral/organic interaction in more complex systems such as in bone or in other human mineralized tissues. In this study, the mineral phase of Lingula adamsi was characterized using a combination of ultrastructural and crystallographic techniques. The results showed that L. adamsi shells consist of apatite crystals of varying size, shape, and orientation in different areas of the shell. The c-axis of apatite was parallel to the shell surface and crystals were organized in different laminae. Compared to trabecular bovine bone, L. adamsi shells demonstrated a higher crystallinity and a lower amount of carbonate and organic compounds. This study therefore demonstrated how dissimilar organic matrix between L. adamsi shell and trabecular bone can modify the ultrastructural characteristics of apatite crystals in these two biomineralized tissues.  相似文献   

18.
The outstanding mechanical properties of biological tissues such as wood or bone are mainly due to their hierarchical structure and to their optimization at all levels of hierarchy. It is therefore essential to characterize the structure at all levels to understand the complex behavior of such tissues. Structures down to the micrometer level are accessible to light or scanning electron microscopic observation. In the case of bone this includes, for example, morphometry of the trabecular architecture or the bone mineral density distribution in cortical and trabecular bone. To characterize the sub-micrometer structure of, e.g., the collagen-mineral composite in the case of bone or the cellulose microfibrils in the case of wood, other methods, such as transmission electron microscopy or X-ray scattering are necessary. The recent availability of extremely brilliant synchrotron X-ray sources has led to the development of the new techniques of scanning small-angle X-ray scattering and scanning X-ray microdiffraction, which are capable of providing structural information on the micrometer and the nanometer level, simultaneously. As a basic principle of the method the specimen is scanned across an X-ray beam which has a diameter of few micrometers. Measuring the X-ray absorption at each position provides an image of the specimen (microradiography) with resolution similar to light microscopy, in the micrometer range. Moreover, the X-ray scattering pattern is analyzed at each specimen position to provide parameters characterizing the structure in the nanometer range. The present paper reviews the principles of the techniques and demonstrates their application to biological materials, such as wood or bone.  相似文献   

19.
Selenium, being an essential mineral in the mammalian diet, is important in providing protection against oxidative damage. Numerous in vitro studies of selenium compounds reveal a very high correlation between catalytic activity of selenium compounds and toxicity. The present study was designed to investigate the effects of dietary selenium on the biomechanical properties of bone. New born rats of both sexes were fed with either a control, or a selenium- and vitamin E-deficient, or a selenium-excess and vitamin E-adequate diet. We obtained the stiffness (modulus of elasticity) of bones (femur and tibia) by tensile test for all groups considered. Both the deficient and the excess groups have decreased biomechanical strength with respect to the control group. To support our biomechanical results for both experimental groups, X-ray diffraction analysis and FTIR spectroscopic study were performed on the femurs and tibiae. The X-ray diffraction analysis showed that the intensities of the peak observed at around 2°=31.820, in the control femur and tibia are stronger than the intensities of the corresponding peak of two experimental groups. In FTIR spectroscopy, the disappearance and/or reduction of the intensities of some carbonate bands in the two experimental groups indicate that there is a decrease in crystallinity and mineral contents which, together with X-ray diffraction analysis, correlate very well with the biomechanical data.  相似文献   

20.
Over the last 30 years several techniques have been developed to separate bone matrix and bone mineral, in order to allow for a study of each component independently of the other. Preservation of original characteristics of the phase studied after isolation has always been a great challenge for all such techniques. The hydrazine deproteination procedure, first proposed by Termine, has been one of the processes most widely used for studying bone mineral. It is found to be one of the most effective, notwithstanding controversy over its efficiency in bone deproteination and criticism regarding possible changes it could make to the characteristics of bone mineral. In this work, we have studied the possible chemical and physical alterations caused by the hydrazine deproteination process to bone mineral from rats and to other materials of biological interest. Materials were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), inductive coupled plasma-optical emission spectroscopy (ICP-OES), C-H-N analysis and infrared spectroscopy (FTIR), before and after hydrazine deproteination. Finally, here we present a comprehensive discussion on the criticism of hydrazine deproteination. The experimental results obtained in this work, even when compared to the results in the literature, show that most widespread criticism to the hydrazine deproteination process is not completely justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号