共查询到20条相似文献,搜索用时 15 毫秒
1.
Oleszewski M Gutwein P von der Lieth W Rauch U Altevogt P 《The Journal of biological chemistry》2000,275(44):34478-34485
The L1 adhesion molecule is a 200-220-kDa membrane glycoprotein of the Ig superfamily implicated in important neural processes including neuronal cell migration, axon outgrowth, learning, and memory formation. L1 supports homophilic L1-L1 binding that involves several Ig domains but can also bind with high affinity to the proteoglycan neurocan. It has been reported that neurocan can block homophilic binding; however, the mechanism of inhibition and the precise binding sites in both molecules have not been determined. By using fusion proteins, site-directed mutagenesis, and peptide blocking experiments, we have characterized the neurocan-binding site in the first Ig-like domain of human L1. Results from molecular modeling suggest that the sequences involved in neurocan binding are localized on the surface of the first Ig domain and largely overlap with the G-F-C beta-strands proposed to interact with the fourth Ig domain during homophilic binding. This suggests that neurocan may sterically hinder a proper alignment of L1 domains. We find that the C-terminal portion of neurocan is sufficient to mediate binding to the first Ig domain of L1, and we suggest that the sushi domain cooperates with a glycosaminoglycan side chain in forming the binding site for L1. 相似文献
2.
3.
Wenyu Yu David Smil Fengling Li Wolfram Tempel Oleg Fedorov Kong T. Nguyen Yuri Bolshan Rima Al-Awar Stefan Knapp Cheryl H. Arrowsmith Masoud Vedadi Peter J. Brown Matthieu Schapira 《Bioorganic & medicinal chemistry》2013,21(7):1787-1794
Chemical inhibition of proteins involved in chromatin-mediated signaling is an emerging strategy to control chromatin compaction with the aim to reprogram expression networks to alter disease states. Protein methyltransferases constitute one of the protein families that participate in epigenetic control of gene expression, and represent a novel therapeutic target class. Recruitment of the protein lysine methyltransferase DOT1L at aberrant loci is a frequent mechanism driving acute lymphoid and myeloid leukemias, particularly in infants, and pharmacological inhibition of DOT1L extends survival in a mouse model of mixed lineage leukemia. A better understanding of the structural chemistry of DOT1L inhibition would accelerate the development of improved compounds. Here, we report that the addition of a single halogen atom at a critical position in the cofactor product S-adenosylhomocysteine (SAH, an inhibitor of SAM-dependent methyltransferases) results in an 8-fold increase in potency against DOT1L, and reduced activities against other protein and non-protein methyltransferases. We solved the crystal structure of DOT1L in complex with Bromo-deaza-SAH and rationalized the observed effects. This discovery reveals a simple strategy to engineer selectivity and potency towards DOT1L into the adenosine scaffold of the cofactor shared by all methyltransferases, and can be exploited towards the development of clinical candidates against mixed lineage leukemia. 相似文献
4.
DOT1L, the only known histone H3-lysine 79 (H3K79) methyltransferase, has been shown to be essential for the survival and proliferation of mixed-linkage leukemia (MLL) gene rearranged leukemia cells, which are often resistant to conventional chemotherapeutic agents. To study the functions of DOT1L in MLL-rearranged leukemia, SYC-522, a potent inhibitor of DOT1L developed in our laboratory, was used to treat MLL-rearranged leukemia cell lines and patient samples. SYC-522 significantly inhibited methylation at H3K79, but not H3K4 or H3K27, and decreased the expression of two important leukemia-relevant genes, HOXA9 and MEIS1, by more than 50%. It also significantly reduced the expression of CCND1 and BCL2L1, which are important regulators of cell cycle and anti-apoptotic signaling pathways. Exposure of MLL-rearranged leukemia cells to this compound caused cell cycle arrest and promoted differentiation of those cells, both morphologically and by increased CD14 expression. SYC-522 did not induce apoptosis, even at 10 µM for as long as 6 days. However, treatment with this DOT1L inhibitor decreased the colony formation ability of primary MLL-rearranged AML cells by up to 50%, and promoted monocytic differentiation. Notably, SYC-522 treatment significantly increased the sensitivity of MLL-rearranged leukemia cells to chemotherapeutics, such as mitoxantrone, etoposide and cytarabine. A similar sensitization was seen with primary MLL-rearranged AML cells. SYC-522 did not affect chemotherapy-induced apoptosis in leukemia cells without MLL-rearrangement. Suppression of DOT1L activity inhibited the mitoxantrone-induced increase in the DNA damage response marker, γH2AX, and increased the level of cPARP, an intracellular marker of apoptosis. These results demonstrated that SYC-522 selectively inhibited DOT1L, and thereby altered gene expression, promoted differentiation, and increased chemosensitivity by preventing DNA damage response. Therefore, inhibition of DOT1L, in combination with DNA damaging chemotherapy, represents a promising approach to improving outcomes for MLL-rearranged leukemia. 相似文献
5.
Chenxi Shen Stephanie Y. Jo Chenzhong Liao Jay L. Hess Zaneta Nikolovska-Coleska 《The Journal of biological chemistry》2013,288(42):30585-30596
The MLL fusion proteins, AF9 and ENL, activate target genes in part via recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like). Here we report biochemical, biophysical, and functional characterization of the interaction between DOT1L and MLL fusion proteins, AF9/ENL. The AF9/ENL-binding site in human DOT1L was mapped, and the interaction site was identified to a 10-amino acid region (DOT1L865–874). This region is highly conserved in DOT1L from a variety of species. Alanine scanning mutagenesis analysis shows that four conserved hydrophobic residues from the identified binding motif are essential for the interactions with AF9/ENL. Binding studies demonstrate that the entire intact C-terminal domain of AF9/ENL is required for optimal interaction with DOT1L. Functional studies show that the mapped AF9/ENL interacting site is essential for immortalization by MLL-AF9, indicating that DOT1L interaction with MLL-AF9 and its recruitment are required for transformation by MLL-AF9. These results strongly suggest that disruption of interaction between DOT1L and AF9/ENL is a promising therapeutic strategy with potentially fewer adverse effects than enzymatic inhibition of DOT1L for MLL fusion protein-associated leukemia. 相似文献
6.
7.
8.
Kelly E. Leon Raquel Buj Elizabeth Lesko Erika S. Dahl Chi-Wei Chen Naveen Kumar Tangudu Yuka Imamura-Kawasawa Andrew V. Kossenkov Ryan P. Hobbs Katherine M. Aird 《The Journal of cell biology》2021,220(8)
Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation. 相似文献
9.
10.
11.
13.
14.
15.
16.
17.
Structure of the catalytic domain of human DOT1L,a non-SET domain nucleosomal histone methyltransferase 总被引:4,自引:0,他引:4
Dot1 is an evolutionarily conserved histone methyltransferase that methylates lysine-79 of histone H3 in the core domain. Unlike other histone methyltransferases, Dot1 does not contain a SET domain, and it specifically methylates nucleosomal histone H3. We have solved a 2.5 A resolution structure of the catalytic domain of human Dot1, hDOT1L, in complex with S-adenosyl-L-methionine (SAM). The structure reveals a unique organization of a mainly alpha-helical N-terminal domain and a central open alpha/beta structure, an active site consisting of a SAM binding pocket, and a potential lysine binding channel. We also show that a flexible, positively charged region at the C terminus of the catalytic domain is critical for nucleosome binding and enzymatic activity. These structural and biochemical analyses, combined with molecular modeling, provide mechanistic insights into the catalytic mechanism and nucleosomal specificity of Dot1 proteins. 相似文献
18.
Elena D. Shpak 《植物学报(英文版)》2013,55(12):1238-1250
Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined. 相似文献
19.
John A. Gamon Kaoru Kitajima Stephen S. Mulkey Lydia Serrano S. Joseph Wright 《Biotropica》2005,37(4):547-560
Using optical and photosynthetic assays from a canopy access crane, we examined the photosynthetic performance of tropical dry forest canopies during the dry season in Parque Metropolitano, Panama City, Panama. Photosynthetic gas exchange, chlorophyll fluorescence, and three indices derived from spectral reflectance (the normalized difference vegetation index, the simple ratio, and the photochemical reflectance index) were used as indicators of structural and physiological components of photosynthetic activity. Considerable interspecific variation was evident in structural and physiological behavior in this forest stand, which included varying degrees of foliage loss, altered leaf orientation, stomatal closure, and photosystem II downregulation. The normalized difference vegetation index and the simple ratio were closely related to canopy structure and absorbed radiation for most species, but failed to capture the widely divergent photosynthetic behavior among evergreen species exhibiting various degrees of downregulation. The photochemical reflectance index and chlorophyll fluorescence were related indicators of photosynthetic downregulation, which was not detectable with the normalized difference vegetation index or simple ratio. These results suggest that remote sensing methods that ignore downregulation cannot capture within‐stand variability in actual carbon flux for this diverse forest type. Instead, these findings support a sampling approach that derives photosynthetic fluxes from a consideration of both canopy light absorption (e.g., normalized difference vegetation index) and photosynthetic light‐use efficiency (e.g., photochemical reflectance index). Such sampling should improve our understanding of controls on photosynthetic carbon uptake in diverse tropical forest stands. 相似文献
20.
组蛋白甲基化是一种重要的组蛋白共价修饰, 在染色质结构和基因表达的调控过程中起着重要的、多样化的作用。DOT1催化核心球体部位的组蛋白H3第79位赖氨酸(H3K79)使其发生甲基化, 是首个被发现的无SET结构域的组蛋白赖氨酸甲基转移酶, 代表了一类新的组蛋白赖氨酸甲基转移酶。DOT1及H3K79甲基化的特点决定了其可能具有重要的、特殊的生物学功能。文章重点综述了DOT1蛋白的结构及特点, DOT1及H3K79甲基化的生物学功能以及组蛋白泛素化修饰对H3K79甲基化的反式调控。 相似文献