首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is growing evidence that Plasmodium falciparum parasites in southeastern Asia have developed resistance to artemisinin combination therapy. The resistance phenotype has recently been shown to be associated with four single nucleotide polymorphisms in the parasite’s genome. We assessed the prevalence of two of these single nucleotide polymorphisms in P. falciparum parasites imported into Scotland between 2009 and 2012, and in additional field samples from six countries in southeastern Asia. We analysed 28 samples from 11 African countries, and 25 samples from nine countries in Asia/southeastern Asia/Oceania. Single nucleotide polymorphisms associated with artemisinin combination therapy resistance were not observed outside Thailand and Cambodia.  相似文献   

2.
Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host’s cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.  相似文献   

3.
Polymorphism in the beta-globin gene (hemoglobin S) has been associated with protection against severe forms of malaria. In a cross-sectional study, 180 young Gabonese children with and without sickle cell trait and harboring asymptomatic Plasmodium falciparum infections, were assessed for the responses to recombinant protein containing the conserved region of glutamate-rich protein (GLURP). We reported increased age-dependence of antibody prevalence and levels of total IgG (p<0.0001), IgG1 (p=0.009), and IgG3 (p<0.03) antibodies to GLURP with a cut-off at 5 years of age. Whatever the hemoglobin type, cytophilic antibodies (IgG1 and IgG3) were prevalent, but GLURP-specific IgG4 antibodies were detected at significantly (p<0.05) lower levels in HbAS children. We showed that the distribution of non-cytophilic IgG antibodies differs according to the hemoglobin type and to the malaria antigens tested. This may have possible implication for the clearance of malaria parasites and for protection against severe malaria.  相似文献   

4.
The genotypes of merozoite surface protein-1, merozoite surface protein-2 and glutamine rich protein are frequently used to distinguish recrudescence from reinfection when parasitaemia reappears after antimalarial drug treatment. However, none of the previous reports has clearly assessed the change of genetic diversity following drug treatment. In the present study, we have assessed the impact of pyrimethamine/sulfadoxine and chlorproguanil/dapsone on the genetic diversity of isolates and the multiplicity of infection in patient isolates from Kilifi, Kenya. We have analysed the length polymorphism of merozoite surface protein-1, merozoite surface protein-2 and glutamine rich protein and the data clearly show that treatment with pyrimethamine/sulfadoxine and chlorproguanil/dapsone did not change the multiplicity of infection found in patients, in contrast to the selection that these drugs exert on the genes encoded by the target enzymes. In addition, we report that children of less than 2 years tend to have fewer numbers of clones per isolate when compared with older children. Overall, this study shows that the selection for genes that confer drug resistance is not a factor in reducing the genetic diversity of parasite clones in a patient.  相似文献   

5.
Malaria transmission remains poorly documented in areas of low transmission. A study has been carried out over two consecutive years in Analamiranga, a village located at an altitude of 885m on the western edge of the Malagasy highlands, with the aim of generating and updating malariometric indexes for both mosquitoes and schoolchildren. In this village, no vector control measures were performed during the study period nor during previous decades. Mosquitoes were collected monthly when landing on human volunteers and in various resting-places. Blood samples were taken every 3 months from schoolchildren aged 6-12 years and microscopically examined. Of 7,480 mosquitoes collected on human subjects, 5,790 were anophelines. Ten anopheline species were represented and three of these, Anopheles funestus, Anopheles arabiensis and Anopheles mascarensis, accounted for 59.2% of the collection. Of these three species 4,640 were also collected in resting places. The proportion of mosquitoes fed on bovids was high; conversely, the anthropophilic rate (mosquitoes fed on human beings) was especially low: 31%, 7% and 1%, respectively, for A. funestus, A. arabiensis and A. mascarensis. The only confirmed malaria vector was A. funestus with a low sporozoite index (of 6,830 A. funestus, five were positive for Plasmodium falciparum and four for Plasmodium vivax). The annual entomological inoculation rate (number of bites of infected anophelines per adult person) was estimated at 2.49 with low variation over the 2 years. Overall, 909 thick blood smears were tested from blood samples taken from schoolchildren with 30.3% being malaria-positive. The four Plasmodium species infecting human subjects were detected in the following proportions: P. falciparum 78.9%, P. vivax 19.4%, Plasmodium malariae 1.0% and Plasmodium ovale 0.7%. The proportions of children who were infected with any Plasmodium ranged from 10.7% in February to 51.0% in September. Parasitemic children with fever (axillary temperature >37.5 degrees C) accounted for 16.4% of the children sampled. This study demonstrates that there are substantial parasitological consequences of even a relatively low entomological transmission and also recommends including exterior resting-places of mosquitoes in future spraying campaigns in the highlands of Madagascar.  相似文献   

6.
Malaria represents a continuing and major global health challenge and our understanding of how the Plasmodium parasite causes severe disease and death remains poor. One serious complication of the infection is cerebral malaria, a clinically complex syndrome of coma and potentially reversible encephalopathy, associated with a high mortality rate and increasingly recognised long-term sequelae in survivors. Research into the pathophysiology of cerebral malaria, using a combination of clinical and pathological studies, animal models and in vitro cell culture work, has focussed attention on the blood-brain barrier (BBB). This represents the key interface between the brain parenchyma and the parasite, which develops within an infected red cell but remains inside the vascular space. Studies of BBB function in cerebral malaria have provided some evidence for parasite-induced changes secondary to sequestration of parasitised red blood cells and host leukocytes within the cerebral microvasculature, such as redistribution of endothelial cell intercellular junction proteins and intracellular signaling. However, the evidence for a generalised increase in BBB permeability, leading to cerebral oedema, is conflicting. As well as direct cell adhesion-dependent effects, local adhesion-independent effects may activate and damage cerebral endothelial cells and perivascular cells, such as decreased blood flow, hypoxia or the effects of parasite toxins such as pigment. Finally, a number of systemic mechanisms could influence the BBB during malaria, such as the metabolic and inflammatory complications of severe disease acting 'at a distance'. This review will summarise evidence for these mechanisms from human studies of cerebral malaria and discuss the possible role for BBB dysfunction in this complex and challenging disease.  相似文献   

7.
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P. falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite.  相似文献   

8.
The malaria burden in Viet Nam has been in decline in recent decades, but localised areas of high transmission remain. We used spatiotemporal analytical tools to determine the social and environmental drivers of malaria risk and to identify residual high-risk areas where control and surveillance resources can be targeted. Counts of reported Plasmodium falciparum and Plasmodium vivax malaria cases by month (January 2007-December 2008) and by district were assembled. Zero-inflated Poisson regression models were developed in a Bayesian framework. Models had the percentage of the district’s population living below the poverty line, percent of the district covered by forest, median elevation, median long-term average precipitation, and minimum temperature included as fixed effects, and terms for temporal trend and residual district-level spatial autocorrelation. Strong temporal and spatial heterogeneity in counts of malaria cases was apparent. Poverty and forest cover were significantly associated with an increased count of malaria cases but the magnitude and direction of associations between climate and malaria varied by socio-ecological zone. There was a declining trend in counts of malaria cases during the study period. After accounting for the social and environmental fixed effects, substantial spatial heterogeneity was still evident. Unmeasured factors which may contribute to this residual variation include malaria control activities, population migration and accessibility to health care. Forest-related activities and factors encompassed by poverty indicators are major drivers of malaria incidence in Viet Nam.  相似文献   

9.
Tumor necrosis factor (TNF) has long been recognized to promote malaria parasite killing, but also to contribute to the development of severe malaria disease. The precise molecular mechanisms that influence these different outcomes in malaria patients are not well understood, but the virulence and drug-resistance phenotype of malaria parasites and the genetic background and age of patients are likely to be important determinants. In the past few years, important roles for other TNF family members in host immune responses to malaria parasites and the induction of disease pathology have been discovered. In this review, we will summarize these more recent findings and highlight major gaps in our current knowledge. We will also discuss future research strategies that may allow us to better understand the sometimes subtle and intricate effects of TNF family molecules during malaria infection.  相似文献   

10.
11.
12.
Human chimeras are potentially invaluable models for hemoprotozoan parasites such as Plasmodium falciparum. The work presented assesses the susceptibility of immunomodulated NOD/LtSz-SCID mice to genetically distinct P. falciparum parasites. To this end, mice grafted with human erythrocytes were inoculated with two P. falciparum laboratory lines, 3D7 and Dd2 and four clinical isolates, ISCIII-230, ISCIII-231, ISCIII-381 and ISCIII-399. The results showed that, without a previous period of parasite adaptation, 100% of the inoculated mice developed an infection, generally self-limited, though some mice died. The parasitemias ranged from 0.05 to 8% and lasted an average of 19 days (15-26 days) depending on the line or isolate studied. Sexual forms of different maturity, stage II-IV and mature gametocytes were observed in the peripheral blood of mice in 22, 50, 25, 72 and 80% of the mice infected with Dd2, ISCIII-399, ISCIII-230, ISCIII-231 and ISCIII-381 isolates, respectively. The study of the clinical symptoms, the haematological parameters and the histopathological changes in the infected mice showed that most of the malaria features were present in the infected mice except that the sequestration of infected erythrocytes was absent or at most a minor phenomenon, as also indicated by the presence of mature forms of the parasites in the peripheral blood. This study shows that the human chimeras allow the complete asexual and sexual erythrocytic cycle of different P. falciparum lines and clinical isolates to be observed in vivo. It opens a new way to investigate any parasite population in terms of infectivity, transmission, and drug resistance.  相似文献   

13.
14.
15.
The first interaction between the malaria merozoite and the red blood cell it will invade is mediated by molecules on the surface of the two cells. The Plasmodium falciparum merozoite surface protein (MSP)1 complex that contains MSP1 and two other parasite proteins, MSP6 and MSP7, is likely to be an important component in this process. This article reviews the role of the MSP1 complex in the biology of the host parasite interface with a focus on MSP7 and related proteins that are coded by gene families in each of the different Plasmodium spp.  相似文献   

16.
Inferring the origin and dispersal of the chloroquine-resistant (CQR) malaria parasite, Plasmodium falciparum, is of academic and public health importance. The Pfcrt gene of P. falciparum is widely known as the CQR gene and two major haplotypes of this gene (CVIET and SVMNT) occur widely across CQR-endemic regions of the globe. In India, studies to date of the Pfcrt gene have indicated the widespread prevalence of the SVMNT haplotype (prevalent in the South America and Papua New Guinea), whereas the CVIET haplotype, primarily found in southeast Asia, was not detected at a high frequency in India. This distribution pattern of the two most common CQR-Pfcrt haplotypes in India is quite surprising. Thus, in order to understand probable evolutionary and migration patterns of the CQR-Pfcrt haplotypes into India, we generated new sequence data of exon 2 of the Pfcrt gene and collected published information on the CQR-Pfcrt haplotype data from India, Papua New Guinea, southeast Asia and South America, and performed several population and evolutionary genetic analyses. Among several interesting findings, statistically significant longitudinal clines for the CVIET and SVMNT haplotypes (in opposite directions) in India, and the clustering of India and Papua New Guinea under the SVMNT-specific clade in the phylogenetic tree, are the two most remarkable aspects of the data. It also appears that both the SVMNT and CVIET haplotypes in India have migrated from southeast Asia. In particular, whereas the Indian CVIET haplotype has a southeast Asian origin, the SVMNT haplotype, prevalent in India, seems to have originated in Papua New Guinea and entered India through southeast Asia.  相似文献   

17.
Plasmodium falciparum uses multiple host receptors to attach and invade human erythrocytes. Glycophorins have been implicated as receptors for parasite invasion in human erythrocytes. Here, we screened a phage display cDNA library of P. falciparum (FCR3, a sialic acid-dependent strain) using purified glycophorins and erythrocytes as bait. Several phage clones were identified that bound to immobilized glycophorins and contained the same 74 bp insert encoding the 7-amino acids sequence ETTLKSF. A similar screen using intact human erythrocytes in solution identified additional phage clones containing the same 7-amino acids sequence. Using ELISA and immunofluorescence, direct binding of ETTLKSF peptide to glycophorins and erythrocytes was confirmed. Pull-down and protease treatment assays suggest that ETTLKSF peptide specifically interacts with glycophorin C. The synthetic ETTLKSF peptide partially blocks merozoite invasion in human erythrocytes. Further characterization of ETTLKSF peptide could lead to the development of a novel class of inhibitors against the blood stage malaria.  相似文献   

18.
The resistance of malaria parasites to current anti-malarial drugs is an issue of major concern globally. Recently we identified a Plasmodium falciparum cell membrane aspartyl protease, which binds to erythrocyte band 3, and is involved in merozoite invasion. Here we report the complete primary structure of P. falciparum signal peptide peptidase (PfSPP), and demonstrate that it is essential for parasite invasion and growth in human erythrocytes. Gene silencing suggests that PfSPP may be essential for parasite survival in human erythrocytes. Remarkably, mammalian signal peptide peptidase inhibitors (Z-LL)2-ketone and L-685,458 effectively inhibited malaria parasite invasion as well as growth in human erythrocytes. In contrast, DAPT, an inhibitor of a related γ-secretase/presenilin-1, was ineffective. Thus, SPP inhibitors specific for PfSPP may function as potent anti-malarial drugs against the blood stage malaria.  相似文献   

19.
Plasma samples from patients undergoing treatment in malaria endemic countries often contain anti-malaria drugs, that may overstate effects of specific antibodies in growth inhibition assays (GIA). We describe a modified assay that uses drug resistant P. falciparum parasites (W2) that circumvents the requirement for dialyzing samples that may likely contain drugs such as chloroquine and sulfadoxine/pyrimethamine (SP).  相似文献   

20.
Following infection with Plasmodium falciparum malaria, children in endemic areas develop antibodies specific to antigens on the parasite-infected red cell surface of the infecting isolate, antibodies associated with protection against subsequent infection with that isolate. In some circumstances induction of antibodies to heterologous parasite isolates also occurs and this has been suggested as evidence for cross-reactivity of responses against the erythrocyte surface. The role of these relatively cross-reactive antibodies in protection from clinical malaria is currently unknown. We studied the incidence of clinical malaria amongst children living on the coast of Kenya through one high transmission season. By categorising individuals according to their pre-season parasite status and antibody response to the surface of erythrocytes infected with four parasite isolates we were able to identify a group of children, those who failed to make a concomitant antibody response in the presence of an asymptomatic parasitaemia, at increased susceptibility to clinical malaria in the subsequent 6 months. The fact that this susceptible group was identified regardless of the parasite isolate tested infers a cross-reactive or conserved target is present on the surface of infected erythrocytes. Identification of this target will significantly aid understanding of naturally acquired immunity to clinical malaria amongst children in endemic areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号