共查询到20条相似文献,搜索用时 0 毫秒
1.
A T Pearman H C Castro-Faria-Neto T M McIntyre S M Prescott D M Stafforini 《Life sciences》2001,69(20):2361-2370
We have cloned a cDNA for human UMP-CMP kinase from a macrophage cDNA library. Sequence analysis showed that this cDNA is derived from the same gene as a previously reported EST-derived cDNA. Here we show that a conspicuous difference between these two clones, 73 additional 5' nucleotides in the EST clone, including a putative translational start site, is not functionally significant. This work shows that the additional 5'sequence in the EST clone was unnecessary for enzymatic activity and nonfunctional in the initiation of translation. Specifically, we found that protein expressed by both the macrophage-derived cDNA and the extended cDNA had the same relative molecular mass, consistent with use of an ATG internal to the macrophage-derived clone as the functional start site. In addition, this work more precisely defines the catalytic activity of UMP-CMP kinase. Here, we show a 3-fold greater substrate preference for CMP relative to UMP, identify ATP and UTP as the preferred phosphate donors for the reaction, and demonstrate that the reaction is Mg2+-dependent. In addition, investigation of UMP-CMP-kinase expression revealed two mRNA products in immune tissues and cancer cell lines. The smaller RNA product was previously undescribed. 相似文献
2.
Topalis D Kumamoto H Amaya Velasco MF Dugué L Haouz A Alexandre JA Gallois-Montbrun S Alzari PM Pochet S Agrofoglio LA Deville-Bonne D 《The FEBS journal》2007,274(14):3704-3714
Methylanthraniloyl derivatives of ATP and CDP were used in vitro as fluorescent probes for the donor-binding and acceptor-binding sites of human UMP-CMP kinase, a nucleoside salvage pathway kinase. Like all NMP kinases, UMP-CMP kinase binds the phosphodonor, usually ATP, and the NMP at different binding sites. The reaction results from an in-line phosphotransfer from the donor to the acceptor. The probe for the donor site was displaced by the bisubstrate analogs of the Ap5X series (where X = U, dT, A, G), indicating the broad specificity of the acceptor site. Both CMP and dCMP were competitors for the acceptor site probe. To find antimetabolites for antivirus and anticancer therapies, we have developed a method of screening acyclic phosphonate analogs that is based on the affinity of the acceptor-binding site of the human UMP-CMP kinase. Several uracil vinylphosphonate derivatives had affinities for human UMP-CMP kinase similar to those of dUMP and dCMP and better than that of cidofovir, an acyclic nucleoside phosphonate with a broad spectrum of antiviral activities. The uracil derivatives were inhibitors rather than substrates of human UMP-CMP kinase. Also, the 5-halogen-substituted analogs inhibited the human TMP kinase less efficiently. The broad specificity of the enzyme acceptor-binding site is in agreement with a large substrate-binding pocket, as shown by the 2.1 A crystal structure. 相似文献
3.
Topalis D Kumamoto H Alexandre JA Dugué L Pochet S Berteina-Raboin S Agrofoglio LA Deville-Bonne D 《Nucleosides, nucleotides & nucleic acids》2007,26(10-12):1369-1373
Human UMP-CMP kinase is involved in the phosphorylation of nucleic acid precursors and also in the activation of antiviral analogues including cidofovir, an acyclic phosphonate compound that mimicks dCMP and shows a broad antiviral spectrum. The binding of ligands to the enzyme was here investigated using a fluorescent probe and a competitive titration assay. At the acceptor site, the enzyme was found to accommodate any base, purine and pyrimidine, including thymidine. A method for screening analogues based on their affinity for the UMP binding site was developed. The affinities of uracil vinylphosphonate derivatives modified in the 5 position were found similar to (d)UMP and (d)CMP and improved when compared to cidofovir. 相似文献
4.
K M Skubitz D D Ehresmann T P Ducker 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(2):638-650
Although most studies of protein phosphorylation have focused on intracellular protein kinases, evidence for protein kinase activity on the surface of several types of cells has been described. Evidence was recently provided for the existence of ecto-protein kinase activity on the surface of human neutrophils. Evidence for three distinct ecto-protein kinase activities was detected, one that phosphorylates endogenous surface proteins, one that phosphorylates exogenous substrates in a cAMP-independent manner and is released in the presence of substrate, and a low level of activity of one that phosphorylates exogenous Kemptide in a cAMP-dependent manner. To begin to elucidate its role in neutrophil function, we have characterized several properties of the releasable ecto-protein kinase activity on human neutrophils. This enzyme activity was inhibited by impermeant stilbene disulfonic acids, which are known to alter neutrophil function, as well as by impermeant sulfhydryl reactive agents. Enzyme activity was detectable at physiologic concentrations of Mg2+, but was higher in the presence of Mn2+. Protein kinase activity was strongly inhibited by heparin, whereas trifluoperazine, cAMP, and cGMP had little effect on kinase activity. Protein kinase activity was selectively removed from the cell surface by incubation with the ecto-kinase substrates casein and phosvitin, but the enzyme was not released by phosphatidylinositol-specific phospholipase C. Repeated exposure of neutrophils to substrate depleted ecto-protein kinase activity from the cell surface, but activity was rapidly restored by incubation in buffer lacking substrate. The released protein kinase had a Km for ATP of approximately 0.5 microM and a pH maximum between 7.0 and 7.5. At least four ecto-protein kinase substrates were detected in serum; vitronectin was identified as one of these substrates by immunoprecipitation studies. Although the exact role of ecto-protein kinase activity in neutrophil function remains undefined, the identification of vitronectin as a serum substrate suggests that it interacts with a physiologically important substrate. 相似文献
5.
Alexandre JA Roy B Topalis D Pochet S Périgaud C Deville-Bonne D 《Nucleic acids research》2007,35(14):4895-4904
L-nucleoside analogues such as lamivudine are active for treating viral infections. Like D-nucleosides, the biological activity of the L-enantiomers requires their stepwise phosphorylation by cellular or viral kinases to give the triphosphate. The enantioselectivity of NMP kinases has not been thoroughly studied, unlike that of deoxyribonucleoside kinases. We have therefore investigated the capacity of L-enantiomers of some natural (d)NMP to act as substrates for the recombinant forms of human uridylate-cytidylate kinase, thymidylate kinase and adenylate kinases 1 and 2. Both cytosolic and mitochondrial adenylate kinases were strictly enantioselective, as they phosphorylated only D-(d)AMP. L-dTMP was a substrate for thymidylate kinase, but with an efficiency 150-fold less than D-dTMP. Both L-dUMP and L-(d)CMP were phosphorylated by UMP-CMP kinase although much less efficiently than their natural counterparts. The stereopreference was conserved with the 2'-azido derivatives of dUMP and dUMP while, unexpectedly, the 2'-azido-D-dCMP was a 4-fold better substrate for UMP-CMP kinase than was CMP. Docking simulations showed that the small differences in the binding of D-(d)NMP to their respective kinases could account for the differences in interactions of the L-isomers with the enzymes. This in vitro information was then used to develop the in vivo activation pathway for L-dT. 相似文献
6.
1. Human hepatic "acid" beta-galactosidase preparations, which had been purified approximately 250-fold, were examined for activities toward 4-methylumbelliferyl beta-galactoside, galactosylceramide, lactosylceramide, galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosyl-glucosylceramide (GM1-Ganglioside) and galactosyl-Cacetylgalactosaminyl-galactosyl-glucosylceramide (asialo GM1-ganglioside). 2. The enzyme was active toward the synthetic substrate, GM1-ganglioside and asialo GM1-ganglioside but was inactive toward galactosylceramide. Under our assay conditions, optimized for lactosylceramidase II, the preparations were as active toward lactosylceramide as toward GM1-ganglioside or its asialo derivative. Teh apparent Km values for the three natural substrates were similar. When determined by the assay system of Wenger, D.A., Sattler, M., Clark, C. and McKelvey, H. (1974) Clin. Chim. Acta 56, 199-206, lactosylceramidecleaving activity was 0.2% of that determined by our assay system. This confirmed our previous suggestion that the Wenger assay system determines exclusively the activity of lactosylceramidase I, which is probably identical with galactosylceramide beta-galactosidase. 3. Crude sodium taurocholate was far more effective than pure taurocholate in stimualting hydrolysis of the three glycosphingolipids by the beta-galactosidase. However, crude tauroxycholate, suggesting that the unique activating capacity of the crude taurocholate might be due to taurodeoxycholate present as the major impurity. 4. Cl- was generally stimulatory for hydrolysis of the natural glycosphingolipids by our enzyme preparation. Effects of additional oleic acid and Triton X-100 Were generally minor in either direction. 5. When the enzyme preparation was diluted with water, activity toward the synthetic substrate declined rapidly while those toward the natural substrates were essentially stable. Activity toward the synthetic substrate remained much more stable when the enzyme was diluted with 0.1 M sodium citrate/phosphate buffer, pH 5.0. 6. These observations provide insight into the complex relationship among the human hepatic beta-galactosidases. 相似文献
7.
A series of analogues of L-adenosine and of L-guanosine, including beta-L-dA, beta-L-Ado, beta-L-araA, and beta-L-dG, have been shown to be substrates of human deoxycytidine kinase thus demonstrating the complete lack of enantioselectivity of this enzyme. 相似文献
8.
9.
Liu S Gong X Yan X Peng T Baker JC Li L Robben PM Ravindran S Andersson LA Cole AB Roche TE 《Archives of biochemistry and biophysics》2001,386(2):123-135
The pyruvate dehydrogenase (E1) component of the pyruvate dehydrogenase complex (PDC) catalyzes a two-step reaction. Recombinant production of substrate amounts of the lipoyl domains of the dihydrolipoyl transacetylase (E2) component of the mammalian PDC allowed kinetic characterization of the rapid physiological reaction catalyzed by E1. Using either the N-terminal (L1) or the internal (L2) lipoyl domain of E2 as a substrate, analyses of steady state kinetic data support a ping pong mechanism. Using standard E1 preparations, Michaelis constants (Km) were 52 +/- 14 microM for L1 and 24.8 +/- 3.8 microM for pyruvate and k(cat) was 26.3 s(-1). With less common, higher activity preparations of E1, the Km values were > or =160 microM for L1 and > or =35 microM for pyruvate and k(cat) was > or =70 s(-1). Similar results were found with the L2 domain. The best synthetic lipoylated-peptide (L2 residues 163-177) was a much poorer substrate (Km > or =15 mM, k(cat) approximately equals 5 s(-1); k(cat)/Km decreased >1,500-fold) than L1 or L2, but a far better substrate in the E1 reaction than free lipoamide (k(cat)/Km increased >500-fold). Each lipoate source was an effective substrate in the dihydrolipoyl dehydrogenase (E3) reaction, but E3 had a lower Km for the L2 domain than for lipoamide or the lipoylated peptides. In contrast to measurements with slow E1 model reactions that use artificial acceptors, we confirmed that the natural E1 reaction, using lipoyl domain acceptors, was completely inhibited (>99%) by phosphorylation of E1 and the phosphorylation strongly inhibited the reverse of the second step catalyzed by E1. The mechanisms by which phosphorylation interferes with E1 activity is interpreted based on accrued results and the location of phosphorylation sites mapped onto the 3-D structure of related alpha-keto acid dehydrogenases. 相似文献
10.
L Wiesmüller A A Noegel O Barzu G Gerisch M Schleicher 《The Journal of biological chemistry》1990,265(11):6339-6345
A cDNA coding for UMP-CMP kinase from Dictyostelium discoideum was isolated from a lambda gt11 expression library and sequenced. The corresponding mRNA has a size of 0.7 kilobase and is down-regulated during early development of D. discoideum. Southern blotting demonstrated that the UMP-CMP kinase is encoded by a single gene. The deduced amino acid sequence of UMP-CMP kinase shows a high degree of homology with adenylate kinases from different sources with the highest degree of homology to cytosolic adenylate kinase from vertebrate muscle (43%). The enzyme expressed in Escherichia coli after cloning the cDNA into an ATG expression vector was purified and analyzed for its structural and kinetic properties. The UMP-CMP kinase uses preferentially ATP (Km,app = 25 microM) as phosphate donor and is specific for UMP (Km,app = 0.4 mM) and CMP (Km,app = 0.1 mM). The enzyme is strongly inhibited by the substrate analogue P1-(adenosine-5')-P5-(uridine-5')-pentaphosphate (Ki between 0.05 and 0.1 microM) and is inactivated by modification of free thiol groups with 5,5'-dithiobis(2-nitrobenzoic acid). 相似文献
11.
R Beckmann K Buchner P R Jungblut C Eckerskorn C Weise R Hilbert F Hucho 《European journal of biochemistry》1992,210(1):45-51
Starting from the finding that, for neuronal cells, the nuclear-membrane-associated protein kinase C (PKC) is the so-called 'membrane inserted', constitutively active form, we attempted to identify substrates of this nuclear PKC. For this purpose, nuclear membranes and other subcellular fractions were prepared from bovine brain, and in-vitro phosphorylation was performed. Several nuclear membrane proteins were found, the phosphorylation of which was inhibited by specific PKC inhibitors and effectively catalyzed by added PKC. Combining the methods of two-dimensional gel electrophoresis, in-situ digestion, reverse-phase HPLC and microsequencing, two of these nuclear PKC substrates were identified; the known PKC substrate Lamin B2, which serves as a control of the approach and the nucleolar protein B23. Our data suggest, that, for B23, Ser225 is a site of phosphorylation by PKC. 相似文献
12.
Regulation of deoxyadenosine and nucleoside analog phosphorylation by human placental adenosine kinase 总被引:2,自引:0,他引:2
The enzymes responsible for the phosphorylation of deoxyadenosine and nucleoside analogs are important in the pathogenesis of adenosine deaminase deficiency and in the activation of specific anticancer and antiviral drugs. We examined the role of adenosine kinase in catalyzing these reactions using an enzyme purified 4000-fold (2.1 mumol/min/mg) from human placenta. The Km values of deoxyadenosine and ATP are 135 and 4 microM, respectively. Potassium and magnesium are absolute requirements for deoxyadenosine phosphorylation, and 150 mM potassium and 5 mM MgCl2 are critical for linear kinetics. With only 0.4 mM MgCl2 in excess of ATP levels, the Km for deoxyadenosine is increased 10-fold. ADP is a competitive inhibitor with a Ki of 13 microM with variable MgATP2-, while it is a mixed inhibitor with a Ki and Ki' of 600 and 92 microM, respectively, when deoxyadenosine is variable. AMP is a mixed inhibitor with Ki and Ki' of 177 and 15 microM, respectively, with variable deoxyadenosine; it is a non-competitive inhibitor with a Ki of 17 microM and Ki' of 27 microM with variable ATP. Adenosine kinase phosphorylates adenine arabinoside with an apparent Km of 1 mM using deoxyadenosine kinase assay conditions. The Km values for 6-methylmercaptopurine riboside and 5-iodotubercidin, substrates for adenosine kinase, are estimated to be 4.5 microM and 2.6 nM, respectively. Other nucleoside analogs are potent inhibitors of deoxyadenosine phosphorylation, but their status as substrates remains unknown. These data indicate that deoxyadenosine phosphorylation by adenosine kinase is primarily regulated by its Km and the concentrations of Mg2+, ADP, and AMP. The high Km values for phosphorylation of deoxyadenosine and adenine arabinoside suggest that adenosine kinase may be less likely to phosphorylate these nucleosides in vivo than other enzymes with lower Km values. Adenosine kinase appears to be important for adenosine analog phosphorylation where the Michaelis constant is in the low micromolar range. 相似文献
13.
Cdc25A is a dual-specific protein phosphatase involved in the regulation of the kinase activity of Cdk-cyclin complexes in the eukaryotic cell cycle. To understand the mechanism of this important regulator, we have generated highly purified biochemical reagents to determine the kinetic constants for human Cdc25A with respect to a set of peptidic, artificial, and natural substrates. Cdc25A and its catalytic domain (dN25A) demonstrate very similar kinetics toward the artificial substrates p-nitrophenyl phosphate (k(cat)/K(m) = 15-25 M(-1) s(-1)) and 3-O-methylfluorescein phosphate (k(cat)/K(m) = 1.1-1.3 x 10(4) M(-1) s(-1)). Phospho-peptide substrates exhibit extremely low second-order rate constants and a flat specificity profile toward Cdc25A and dN25A (k(cat)/K(m) = 1 to 10 M(-1) s(-1)). In contrast to peptidic substrates, Cdc25A and dN25A are highly active phosphatases toward the natural substrate, T14- and Y15-bis-phosphorylated Cdk2/CycA complex (Cdk2-pTpY/CycA) with k(cat)/K(m) values of 1.0-1.1 x 10(6) M(-1) s(-1). In the context of the Cdk2-pTpY/CycA complex, phospho-threonine is preferred over phospho-tyrosine by more than 10-fold. The highly homologous catalytic domain of Cdc25c is essentially inactive toward Cdk2-pTpY/CycA. Taken together these data indicate that a significant degree of the specificity of Cdc25 toward its Cdk substrate resides within the catalytic domain itself and yet is in a region(s) that is outside the phosphate binding site of the enzyme. 相似文献
14.
S J Stoehr J E Smolen S J Suchard 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(10):3936-3945
We have identified two major proteins in human neutrophils that are phosphorylated in vitro by protein kinase C (PKC) as lipocortins III and a fragment of a lipocortin-like 68-kDa protein. In electroporated cells, the 68-kDa protein was phosphorylated during stimulation of the cells with either FMLP or PMA. Lipocortins are of interest because of their Ca2(+)- and phospholipid-dependent actin binding properties and ability to inhibit phospholipase A2. Two crude fractions of enzymes and proteins exposed to [gamma-32]PATP in the presence of Ca2+, Mg2+, phosphatidylserine and 1,2-oleoyl-acetyl-rac-glycerol were analyzed by gel electrophoresis and autoradiography. A number of proteins in a detergent-free fraction, including proteins at 36 and 32 kDa, were phosphorylated in the presence of these cofactors. In contrast, only two major proteins (35 and 32 kDa) were phosphorylated in a detergent-extracted fraction. Phosphorylation of the 36, 35, and 32 kDa proteins required the presence of Ca2+, Mg2+, and phosphatidylserine in our soluble fraction and detergent extract, indicating PKC-dependent phosphorylation. The 32-kDa protein phosphorylated in both the soluble fraction and detergent extract was identified as lipocortin III by immunoprecipitation with a cross-reactive antibody that recognized lipocortin I and comparison of cyanogen bromide (CNBr) cleavage patterns of this protein with a lipocortin III standard. The 68-kDa protein was identified as a lipocortin VI-like protein by immunoprecipitation with anti-calelectrin. Additionally, the CNBr cleavage pattern of the 68-kDa protein was similar to that of the 36-kDa protein phosphorylated in our soluble fraction. Autoradiograms of the 68- and 36-kDa fragments immunoprecipitated from our soluble fraction with anticalelectrin and cleaved with CNBr showed that both of these proteins were phosphorylated in this sample. Because phosphorylation is known to change the functional characteristics of the lipocortins, the potential exists to link PKC and lipocortins in neutrophils to regulation of granulemembrane interactions or mediation of inflammation. 相似文献
15.
To separate the interfacial and catalytic reactions of lecithin cholesterol acyltransferase (LCAT), we carried out the first investigation of its reaction with water-soluble substrates. We used a continuous spectrophotometric assay for the hydrolysis of p-nitrophenyl esters of fatty acids to determine the chain length specificity of the enzyme and its modulation by anions and apolipoproteins in solution. By chemical modification of amino acid residues, we demonstrated that the active site serine and histidine residues participate in both the esterase and acyltransferase reactions but that cysteine residues are not involved in the esterase reaction. The kinetics of the LCAT reaction were measured for p-nitrophenyl esters of fatty acids having up to six (C-6) carbons in length. With increasing acyl chain lengths the optimal reaction rates occurred for the C-5 ester and Km and Vmax values decreased progressively, while the specificity constant, kcat/Km, increased. The same series of substrates and longer chain esters, up to C-16, were also reacted with LCAT in the presence of Triton X-100 in order to determine the general trends for the reaction rates as a function of chain length. The observed trends for the reaction rates and kinetic constants were attributed to an increasing binding affinity for the longer acyl chains in a large hydrophobic cavity, with a concomitant restriction in the motions of the substrates and a decreased probability for the correct positioning of the ester bond for hydrolysis, resulting in a decreased substrate turnover. Since the kinetics of the interfacial reactions of LCAT are very sensitive to the presence of anions and apolipoproteins, in particular apoA-I, we investigated the effects of these modulators on the reactions of LCAT in solution. Unlike the interfacial reactions, the hydrolysis of the p-nitrophenyl esters was not affected by 0.1 M concentrations of anions nor by water-soluble apolipoproteins (apoA-I, apoA-II, and apoCs). Thus the regulation of the activity of LCAT is mediated largely by the interfaces on which it acts. 相似文献
16.
The substrates of the cdc2 kinase. 总被引:17,自引:0,他引:17
E A Nigg 《Seminars in cell biology》1991,2(4):261-270
The eukaryotic cell cycle is characterized by two major events, DNA replication (S phase) and mitosis (M phase). According to the current paradigm of the cell cycle as a cdc2 cycle, both of these events are driven by serine-threonine specific protein kinases encoded by functional homologs of the fission yeast cdc2 gene. To understand how cdc2 kinases function, it is necessary to identify their physiological substrates and to determine how phosphorylation of these substrates promotes cell cycle progression. Definitive information about substrates relevant to early stages of the cell cycle (G1 and S phases) remains scarce, but several likely physiological targets of the mitotic cdc2 kinase have recently been identified. Current evidence indicates that cdc2 kinase may trigger entry of cells into mitosis not only by initiating important regulatory pathways but also by direct phosphorylation of abundant structural proteins. 相似文献
17.
18.
Calmodulin-dependent protein kinase II. Kinetic studies on the interaction with substrates and calmodulin. 总被引:1,自引:0,他引:1
The kinetic reaction mechanism of calmodulin (CaM)-dependent protein kinase II (CaM-kinase II), including the regulatory mechanism by CaM, was studied by using microtubule-associated protein 2 (MAP2) as substrate under steady-state conditions. The detailed kinetic analyses of the phosphorylation of MAP2 and its inhibitions by the reaction products and by an ATP analogue, 5'-adenylylimidodiphosphate, revealed the rapid-equilibrium random mechanism. In the absence of Ca2+, CaM-kinase II was inactivated by incubation with ATP. The inactivation rate was dependent on the concentrations of ATP and MAP2, suggesting that these substrates can bind to the enzyme even in the absence of Ca2+/CaM. The activation of the enzyme by CaM reached the maximum when about 10 mol of CaM bound to 1 mol of CaM-kinase II, indicating the stoichiometry of the binding of one CaM to one subunit of the enzyme. The enzyme activity as a function of the concentration of CaM showed a sigmoidal curve. The concentration of CaM required for the half-maximal activation was dependent on the concentration of ATP at a fixed concentration of MAP2, although the Hill coefficient was unaffected by the concentration of ATP. A possible reaction mechanism of CaM-kinase II, including the phosphorylation of MAP2 by the enzyme and the binding of CaM to the enzyme, is discussed. 相似文献
19.
20.