首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone''s camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer grade electronics, we extracted size distributions of sphere suspensions with better than 20 nm accuracy in determining the mean size. We also show results from milk, yeast, and blood cells. Performing these measurements on a portable device presents opportunities for field-testing of food quality, process monitoring, and medical diagnosis.  相似文献   

2.
Two types of swelling-shrinkage change manifested by isolated mammalian heart mitochondria have been studied. One type, designated as phase I or "low amplitude" swelling-shrinkage, is estimated to lead to changes in mitochondrial volume of 20 to 40 per cent, to changes in light scattering of about 30 per cent, and to changes in viscosity. These physical changes in mitochondria are brought about rapidly and reversibly by normal reactants of the respiratory chain. Their speed, specificity, and reversibility indicate that they are closely geared to the normal function of the respiratory chain and are a true reflection of a mechanochemical coupling process characteristic of the physiology of mitochondria. A second type of swelling-shrinkage mechanism, designated as phase II or "high amplitude," leads to changes in light scattering, viscosity, and mitochondrial volume which, frequently but not always, are of higher magnitude than the phase I type. Phase II swelling-shrinkage seems to be only partly under the control of the respiratory chain. Prior to the completion of phase II swelling, a stepwise loss of mitochondrial function can be identified, such as changes in the rate of substrate utilization and loss of respiratory control. Reversal of this type of swelling cannot be effected if the swelling change reaches a steady state. This type of swelling may provide cells with a mechanism for destroying mitochondrial substance.  相似文献   

3.
N-ethylmaleimide (NEM), a reagent that alkylates free sulfhydryl groups, was shown to be a highly effective inhibitor of the following coupled mitochondrial processes: oxidative phosphorylation, ATP-32Pi exchange, Pi-induced light scattering and configurational changes, State III respiration, valinomycin-induced translocation of potassium with Pi as the anion, and calcium accumulation in presence of Pi. However, NEM was less effective or ineffective in inhibiting some processes that do not require inorganic Pi, namely electron transfer and ATPase activity, ADP binding, energized light scattering changes induced by arsenate and nonenergized light scattering changes induced by acetate. The rate of oxidative phosphorylation and of ATP-32Pi exchange was normal in ETPH particles prepared from NEM-treated mitochondria. Also NEM, even et levels 2–3 times greater than those required to inhibit oxidative phosphorylation in intact mitochondria, did not inhibit coupled processes in submitochondrial particles. We are proposing that NEM alkylates sulfhydryl groups in the mitochondrion that modulate Pi translocation, and that the suppression of Pi translocation blocks oxidative phosphorylation, the Pi-dependent energized configurational change in mitochondria and Pi-dependent transport processes.On leave of absence from the Department of Biochemistry, Cancer Institute Okayama University Medical School, Okayama, Japan.On leave of absence from the Department of Pathology, Nagoya University Medical School, Nagoya, Japan.  相似文献   

4.
Optical scatter imaging (OSI), a technique we developed recently, was used to measure the ratio of wide-to-narrow angle scatter (OSIR) within endothelial cells subjected to calcium overload (1.6 mM) after permeabilization by ionomycin. Within a few minutes of calcium overload, the mitochondria, which started as elongated organelles, rounded up into spherically shaped particles. This change in morphology was accompanied by a statistically significant 14% increase in OSIR in the cells' cytoplasm. Mitochondrial rounding and OSIR increase were suppressed by cyclosporin A (25 microM), implying that the observed geometrical and scattering changes were directly attributable to the mitochondrial permeability transition. The angular scattering properties of a long mitochondrion rounding up were approximated by numerical simulations of light scatter from an ellipsoid rounding up into a sphere. The simulations predicted a relative increase in OSIR comparable to that measured experimentally for the case where the shape transition takes place with little or no volume increase. The simulations also suggested that mitochondrial refractive index changes could not account for the OSIR changes observed. Our data show that changes in OSIR correlate with mitochondrial morphology change in situ. OSI provides a new tool for subcellular imaging and complements other microscopy methods, such as fluorescence.  相似文献   

5.
The high-amplitude swelling of mitochondria is critically considered. In contrast to numerous statements by some authors about a marked swelling of isolated liver mitochondria under the influence of palmitic acid, calcium ions, or hypotension, we have shown that mitochondria are generally not subject to highamplitude swelling. According to optical-microscopy data even during long-lasting incubation (in distilled water) where full hypotension takes place, the size of liver mitochondria (approximately 1 µm) can be enlarged by no more than by 40%. Under short-lasting hypotension or the addition of palmitic acid the mitochondrial diameter becomes greater by only 20% or remains virtually unchanged. The light scattering of the mitochondrial suspension measured using a photometer according to the decrease in optical density declines by 2.5 times. A decrease in the light scattering in hypotension or via the addition of palmitic acid or calcium (in an isotonic medium) occurs because of damage (even destruction) to the outer membrane, rather than due to the swelling of mitochondria, as was previously believed. The inner membrane is not significantly expanded. The destruction of the outer membrane reduces the probability of light scattering by each mitochondrion at the boundary layer of the water/membrane interface. Release of substances from the matrix resulting in a decrease of its refractive index may additionally contribute to the decrease in light scattering. Palmitic acid and calcium (at concentrations of 10 to 100 µM) cause permeabilization and disruption of the outer membrane gradually, over several minutes. Full hypotension activates this process very rapidly, viz., within a fraction of a second. Under low ionic-strength conditions, the addition of calcium leads to neutralization of negative charges on the membrane surface, which induces aggregation of mitochondria, thus enhancing light scattering and creating the illusion of mitochondrial swelling.  相似文献   

6.
Mitochondrial stress results in changes in mitochondrial function, morphology and homeostasis (biogenesis, fission/fusion, mitophagy) and may lead to changes in mitochondrial subpopulations. While flow cytometric techniques have been developed to quantify features of individual mitochondria related to volume, Ca2+ concentration, mtDNA content, respiratory capacity and oxidative damage, less information is available concerning the identification and characterization of mitochondrial subpopulations, particularly in epithelial cells. Mitochondria from rabbit kidneys were stained with molecular probes for cardiolipin content (nonyl acridine orange, NAO) and membrane potential (tetramethylrhodamine, TMRM) and analyzed using flow cytometry. We validated that side scatter was a better indicator of volume and that as side scatter (SSC) decreased mitochondrial volume increased. Furthermore, those mitochondria with the highest NAO content had greater side scattering and were most highly charged. Mitochondria with average NAO content were of average side scattering and maintained an intermediate charge. Those mitochondria with low NAO content had minimal side scattering and exhibited minimal charge. Upon titration with the uncoupler carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), it was found that the high NAO content subpopulations were more resistant to uncoupling than lower NAO content populations. Ca2+-induced swelling of mitochondria was evaluated using probability binning (PB) analyses of SSC. Interestingly, only 30 % of the mitochondria showed changes in response to Ca2+, which was blocked by cyclosporine A. In addition, the small, high NAO content mitochondria swelled differentially in response to Ca2+ over time. Our results demonstrate that flow cytometry can be used to identify mitochondrial subpopulations based on high, mid and low NAO content and/or volume/complexity. These subpopulations showed differences in membrane potential, volume, and responses to uncoupling and Ca2+-induced swelling.  相似文献   

7.
The mechanisms involved in the induction of cyclosporine A sensitive mitochondrial swelling by oxidative stress were investigated in isolated guinea pig liver mitochondria. The aim of our study was to investigate, if swelling is inevitably associated with the oxidation of pyridine nucleotides, and if the oxidized pyridine nucleotides have to be hydrolysed for the induction of mitochondrial swelling. Quantitative measurement of oxidized pyridine nucleotides was performed with HPLC. Mitochondrial swelling was recorded by monitoring the decrease in light scattering of the mitochondrial suspension. Reduction and oxidation of pyridine nucleotides were followed by monitoring the changes of the autofluorescence signal of reduced pyridine nucleotides. Qualitative measurement of mitochondrial membrane potential was performed with the fluorescence indicator rhodamine 123. Neither t-butyl hydroperoxide nor the dissipation of the mitochondrial inner membrane potential with FCCP (carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone) induced the opening of the membrane permeability transition pore, unless an extensive oxidation of mitochondrial pyridine nucleotides took place. Mitochondrial swelling induced by our experimental conditions was always sensitive to cyclosporine A and accompanied by a cyclosporine A sensitive release of inner mitochondrial pyridine nucleotides without pyridine nucleotide hydrolysis. Not the cycling of calcium across the mitochondrial inner membrane but the accumulation of calcium inside the mitochondria was a prerequisite for mitochondrial swelling. The mitochondrial membrane permeability transition is neither caused nor accompanied by the hydrolysis of mitochondrial pyridine nucleotides.  相似文献   

8.
The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.  相似文献   

9.
10.
The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.  相似文献   

11.
Detailed studies correlating changes in mitochondrial optical density, packed volume, and ultrastructure associated with osmotically-induced swelling were performed. Various swelling states were established by incubating mitochondria (isolated in 0.25 M sucrose) at 0°C for 5 min in series of KCl and sucrose solutions ranging in tonicity from 250 to 3 milliosmols. Reversibility of swelling was determined by examining mitochondria exposed to 250 milliosmols media after they had been induced to swell. Swelling induced by lowering the ambient tonicity to approximately 130 (liver mitochondria) and 90 (heart mitochondria) milliosmols involves primarily swelling of the inner compartment within the intact outer membrane. Decreasing the ambient tonicity beyond this level results in rupture of the outer membrane and expansion of the inner compartment through the break. The maximum extent of swelling, corresponding with complete unfolding of the cristae and an increase in over-all mitochondrial volume of approximately 6-fold (liver mitochondria) and 11-fold (heart mitochondria), is reached at approximately 15 (liver mitochondria) and 3 (heart mitochondria) milliosmols. Exposure of liver mitochondria to media of lower tonicity results in irreversibility of inner compartment swelling and escape of matrix material. These changes appear to result from increased inner membrane permeability, possibly due to stretching.  相似文献   

12.
The structure of mitochondrial cristae has been studied for the first time by the method of small-angle neutron scattering. Experiments were performed on intact (functioning) mitochondria from rat liver. Mitochondrial cristae are usually considered to be folds of the inner membrane with arbitrary variable intermembrane distances. Under conditions of low-amplitude swelling, mitochondrial cristae transformed into double-membrane structures with a distance of 190 Å between the central planes of the membranes. The formation of double-membrane structures and their structural parameters did not depend on the method for inducing swelling which was accomplished either by placing the mitochondria into a hypotonic medium or through the opening of nonspecific pores.  相似文献   

13.
Calcium overload of neural cell mitochondria plays a key role in excitotoxic and ischemic brain injury. This study tested the hypothesis that brain mitochondria consist of subpopulations with differential sensitivity to calcium-induced inner membrane permeability transition, and that this sensitivity is greatly reduced by physiological levels of adenine nucleotides. Isolated non-synaptosomal rat brain mitochondria were incubated in a potassium-based medium in the absence or presence of ATP or ADP. Measurements were made of medium and intramitochondrial free calcium, light scattering, mitochondrial ultrastructure, and the elemental composition of electron-opaque deposits within mitochondria treated with calcium. In the absence of adenine nucleotides, calcium induced a partial decrease in light scattering, accompanied by three distinct ultrastructural morphologies, including large-amplitude swelling, matrix vacuolization and a normal appearance. In the presence of ATP or ADP the mitochondrial calcium uptake capacity was greatly enhanced and calcium induced an increase rather than a decrease in mitochondrial light scattering. Approximately 10% of the mitochondria appeared damaged and the rest contained electron-dense precipitates that contained calcium, as determined by electron-energy loss spectroscopy. These results indicate that brain mitochondria are heterogeneous in their response to calcium. In the absence of adenine nucleotides, approximately 20% of the mitochondrial population exhibit morphological alterations consistent with activation of the permeability transition, but less than 10% exhibit evidence of osmotic swelling and membrane disruption in the presence of ATP or ADP.  相似文献   

14.
红细胞的前向光散射   总被引:4,自引:0,他引:4  
本文从红细胞前向光散射的观点出发对红细胞的尺寸、红细胞的变形性研究以及红细胞容积、血红蛋白浓度等参数的测定作了系统的思考。提出在红细胞与周围悬浮介质折射车相差不大时,反常衍射比夫朗和费衍射更适合用于红细胞前向光散射的研究。利用两组不同角间隔的前向散射光来同时测量红细胞容积和血红蛋白浓度。同时其它一些标识红细胞的参数如平均红细胞容量(MCV)、平均血红蛋白量(MCH)等均可直接或间接由这两项参数导出。最后还将红细胞的光散射与Mie理论作了对比.  相似文献   

15.
Previous studies have shown that T3 treatment and cold exposure induce similar biochemical changes predisposing rat liver to oxidative stress. This suggests that the liver oxidative damage observed in experimental and functional hyperthyroidism is mediated by thyroid hormone. To support this hypothesis we investigated whether middle-term cold exposure (2 and 10 days), like T3 treatment, also increases H2O2 release by liver mitochondria. We found that the rate of H2O2 release increased only during State 4 respiration, but faster flow of reactive oxygen species (ROS) from mitochondria to the cytosolic compartment was ensured by the concomitant increase in tissue mitochondrial proteins. Cold exposure also increased the capacity of mitochondria to remove H2O2. This indicates that cold causes accelerated H2O2 production, which might depend on enhanced autoxidizable carrier content and should lead to increased mitochondrial damage. Accordingly, mitochondrial levels of hydroperoxides and protein-bound carbonyls were higher after cold exposure. Levels of low-molecular weight antioxidants were not related to the extent of oxidative damage, but susceptibility to both in vitro oxidative challenge and Ca2+-induced swelling increased in mitochondria from cold exposed rats. The cold-induced changes in several parameters, including susceptibility to swelling, were time dependent, because they were apparent or greater after 10 days cold exposure. The cold-induced increase in swelling may be a feedback mechanism to limit tissue oxidative stress, purifying the mitochondrial population from ROS-overproducing mitochondria, and the time course for such change is consistent with the gradual development of cold adaptation.  相似文献   

16.
The sulfonylurea receptor-2 (SUR2) is a subunit of ATP-sensitive potassium channels (K(ATP)) in heart. Mice with the SUR2 gene disrupted (SUR2m) are constitutively protected from ischemia-reperfusion (I/R) cardiac injury. This was surprising because K(ATP), either sarcolemmal or mitochondrial or both, are thought to be important for cardioprotection. We hypothesized that SUR2m mice have an altered mitochondrial phenotype that protects against I/R. Mitochondrial membrane potential (ΔΨ(m)), tolerance to Ca(2+) load, and reactive oxygen species (ROS) generation were studied by fluorescence-based assays, and volumetric changes in response to K(+) were measured by light scattering in isolated mitochondria. For resting SUR2m mitochondria compared with wild type, the ΔΨ(m) was less polarized (46.1 ± 0.4 vs. 51.9 ± 0.6%), tolerance to Ca(2+) loading was increased (163 ± 2 vs. 116 ± 2 μM), and ROS generation was enhanced with complex I [8.5 ± 1.2 vs. 4.9 ± 0.2 arbitrary fluorescence units (afu)/s] or complex II (351 ± 51.3 vs. 166 ± 36.2 afu/s) substrates. SUR2m mitochondria had greater swelling in K(+) medium (30.2 ± 3.1%) compared with wild type (14.5 ± 0.6%), indicating greater K(+) influx. Additionally, ΔΨ(m) decreased and swelling increased in the absence of ATP in SUR2m, but the sensitivity to ATP was less compared with wild type. When the mitochondria were subjected to hypoxia-reoxygenation, the decrease in respiration rates and respiratory control index was less in SUR2m. ΔΨ(m) maintenance in the SUR2m intact myocytes was also more tolerant to metabolic inhibition. In conclusion, the cardioprotection observed in the SUR2m mice is associated with a protected mitochondrial phenotype resulting from enhanced K(+) conductance that partially dissipated ΔΨ(m). These results have implications for possible SUR2 participation in mitochondrial K(ATP).  相似文献   

17.
Sustained oscillations of transmembrane fluxes of Ca2+ and other ions in isolated mitochondria are described. The data are presented that the major cause of the oscillations is the Ca2+-induced Ca2+ efflux from the mitochondrial matrix and spontaneous opening/closing of the permeability transition pore in the inner mitochondrial membrane. Conditions favourable for the generation of oscillations are considered. The role of phospholipid peroxidation and hydrolysis in the generation of [Ca2+] oscillations is emphasized. Literature data concerning [Ca2+] changes in the mitochondrial matrix in intact cells and the data on the participation of mitochondria in intracellular Ca2+ oscillation and in the Ca2+ wave propagation are reviewed. The hypothesis that mitochondria are able to generate [Ca2+] oscillations in intact cells is put forward. It is assumed that Ca2+ oscillations can protect mitochondria of resting cells from osmotic shock and oxidative stress.  相似文献   

18.
Oxidative stress caused by mitochondrial dysfunction during reperfusion is a key pathogenic mechanism in cerebral ischemia–reperfusion (IR) injury. Propofol (2,6-diisopropylphenol) has been proven to attenuate mitochondrial dysfunction and reperfusion injury. The current study reveals that propofol decreases oxidative stress injury by preventing succinate accumulation in focal cerebral IR injury. We evaluated whether propofol could attenuate ischemic accumulation of succinate in transient middle cerebral artery occlusion in vivo. By isolating mitochondria from cortical tissue, we also examined the in vitro effects of propofol on succinate dehydrogenase (SDH) activity and various mitochondrial bioenergetic parameters related to oxidative stress injury, such as the production of reactive oxidative species, membrane potential, Ca2+-induced mitochondrial swelling, and morphology via electron microscopy. Propofol significantly decreased the ischemic accumulation of succinate by inhibiting SDH activity and inhibited the oxidation of succinate in mitochondria. Propofol can decrease membrane potential in normal mitochondria but not in ischemic mitochondria. Propofol prevents Ca2+-induced mitochondrial swelling and ultrastructural changes to mitochondria. The protective effect of propofol appears to act, at least in part, by limiting oxidative stress injury by preventing the ischemic accumulation of succinate.  相似文献   

19.
Tachycardia may cause substantial molecular and ultrastructural alterations in cardiac tissue. The underlying pathophysiology has not been fully explored. The purpose of this study was (I) to validate a three-dimensional in vitro pacing model, (II) to examine the effect of rapid pacing on mitochondrial function in intact cells, and (III) to evaluate the involvement of L-type-channel-mediated calcium influx in alterations of mitochondria in cardiomyocytes during rapid pacing. In vitro differentiated cardiomyocytes from P19 cells that formed embryoid bodies were paced for 24 h with 0.6 and 2.0 Hz. Pacing at 2.0 Hz increased mRNA expression and phosphorylation of ERK1/2 and caused cellular hypertrophy, indicated by increased protein/DNA ratio, and oxidative stress measured as loss of cellular thiols. Rapid pacing additionally provoked structural alterations of mitochondria. All these changes are known to occur in vivo during atrial fibrillation. The structural alterations of mitochondria were accompanied by limitation of ATP production as evidenced by decreased endogenous respiration in combination with decreased ATP levels in intact cells. Inhibition of calcium inward current with verapamil protected against hypertrophic response and oxidative stress. Verapamil ameliorated morphological changes and dysfunction of mitochondria. In conclusion, rapid pacing-dependent changes in calcium inward current via L-type channels mediate both oxidative stress and mitochondrial dysfunction. The in vitro pacing model presented here reflects changes occurring during tachycardia and, thus, allows functional analyses of the signaling pathways involved.  相似文献   

20.
Pham HN  Gregory P 《Plant physiology》1980,65(6):1173-1175
Helminthosporium maydis Race T toxin caused the expected changes in freshly isolated mitochondria from T cytoplasm corn, namely complete uncoupling of oxidative phosphorylation, pronounced stimulation of succinate and NADH respiration, complete inhibition of malate respiration, and increased mitochondrial swelling. In contrast, identical toxin treatments of the mitochondria after 12 hours aging on ice resulted in partial uncoupling, much lower stimulation of succinate and NADH respiration, no inhibition of malate respiration, and no mitochondrial swelling. Almost all of the toxin sensitivity was lost by 6 hours aging. At this stage, the mitochondria were 208× and 66× less sensitive to toxin-induced changes in coupling of malate respiration and state 4 malate respiration rates, respectively. Loss of toxin sensitivity did not occur when the mitochondria were aged under nitrogen or in the presence of 5 millimolar dithiothreitol. This suggested that the aging effect was due to oxidation, possibly of sulfhydryl groups in one or more mitochondrial membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号