首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA polymerases with 3'-5' proofreading function mediate high fidelity DNA replication but their application for mutation detection was almost completely neglected before 1998. The obstacle facing the use of exo(+) polymerases for mutation detection could be overcome by primer-3'-termini modification, which has been tested using allele-specific primers with 3' labeling, 3' exonuclease-resistance and 3' dehydroxylation modifications. Accordingly, three new types of single nucleotide polymorphism (SNP) assays have been developed to carry out genome-wide genotyping making use of the fidelity advantage of exo(+) polymerases. Such SNP assays might also provide a novel approach for re-sequencing and de novo sequencing. These new mutation detection assays are widely adaptable to a variety of platforms, including real-time PCR, multi-well plate and microarray technologies. Application of exo(+) polymerases to genetic analysis could accelerate the pace of personalized medicine.  相似文献   

2.
3.
Computer simulations can provide in principle quantitative correlation between the structures of DNA polymerases and the replication fidelity. This paper describes our progress in this direction. Using several theoretical approaches, including the free energy perturbation (FEP), linear response approximation (LRA), and the empirical valence bond (EVB) methods, we examined the stability of several mismatched base pairs in DNA duplex in aqueous solution, the contribution of binding energy to the fidelity of DNA polymerases beta and T7, and the mechanism and energetics of the polymerization reaction catalyzed by T7 DNA polymerase.  相似文献   

4.
J Tong  W Cao    F Barany 《Nucleic acids research》1999,27(3):788-794
NAD+-dependent DNA ligases from thermophilic bacteria Thermus species are highly homologous with amino acid sequence identities ranging from 85 to 98%. Thermus species AK16D ligase, the most divergent of the seven Thermus isolates collected worldwide, was cloned, expressed in Escherichia coli and purified to homogeneity. This Thermus ligase is similar to Thermus thermophilus HB8 ligase with respect to pH, salt, NAD+, divalent cation profiles and steady-state kinetics.However, the former is more discriminative toward T/G mismatches at the 3'-side of the ligation junction, as judged by the ratios of initial ligation rates of matched and mismatched substrates. The two wild-type Thermus ligases and a Tth ligase mutant (K294R) demonstrate 1-2 orders of magnitude higher fidelity than viral T4 DNA ligase. Both Thermus ligases are active with either the metal cofactor Mg2+, Mn2+or Ca2+but not with Co2+, Ni2+, Cu2+or Zn2+. While the nick closure step with Ca2+becomes rate-limiting which results in the accumulation of DNA-adenylate intermediate, Ni2+only supports intermediate formation to a limited extent. Both Thermus ligases exhibit enhanced mismatch ligation when Mn2+is substituted for Mg2+, but the Tsp. AK16D ligase remains more specific toward perfectly matched substrate.  相似文献   

5.
Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA). Characterization of this infectivity in Tg(CerPrP) mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP) mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.  相似文献   

6.
Showalter AK  Tsai MD 《Biochemistry》2002,41(34):10571-10576
Intensive study has been devoted to understanding the kinetic and structural bases underlying the exceptionally high fidelity (low error frequencies) of the typical DNA polymerase. Commonly proposed explanations have included (i) the concept of fidelity check points, in which the correctness of a nascent base pair match is tested at multiple points along the reaction pathway, and (ii) an induced-fit fidelity enhancement mechanism based on a rate-limiting, substrate-induced conformational change. In this article, we consider the evidence and theoretical framework for the involvement of such mechanisms in fidelity enhancement. We suggest that a "simplified" model, in which fidelity is derived fundamentally from differential substrate binding at the transition state of a rate-limiting chemical step, is consistent with known data and sufficient to explain the substrate selectivity of these enzymes.  相似文献   

7.
DNA polymerases from Bacillus stearothermophilus, Bacillus caldotenax, and Bacillus caldovelox were purified by chromatography on DEAE-cellulose, phosphocellulose, and heparin-Sepharose and obtained in high yield. The enzyme preparations are free of exo- and endonuclease activities. Additional purification steps, e.g., hydrophobic interaction chromatography and chromatography on a Mono Q column or sucrose density gradient centrifugation, are needed to obtain the enzymes in the form of homogeneous 95-kDa proteins. Each of the three organisms possesses a major DNA polymerase activity comparable to DNA polymerase I. The enzymes require Mg2+ (10 to 30 mM) for optimal activity, although 0.4 mM Mn2+ could substitute for magnesium. The optimal reaction temperatures were lowest in B. stearothermophilus (60 to 65 degrees C) and about equal in B. caldovelox and B. caldotenax (65 to 70 degrees C). The thermal stabilities of the enzymes increased in the same order. The DNA polymerase from Thermus thermophilus was isolated for comparison by using a similar procedure. The enzyme was obtained as a homogeneous 85-kDa protein that was also free of exo- and endonucleolytic activities.  相似文献   

8.
In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.  相似文献   

9.
DNA is a remarkable macromolecule that functions primarily as the carrier of the genetic information of organisms ranging from viruses to bacteria to eukaryotes. The ability of DNA polymerases to efficiently and accurately replicate genetic material represents one of the most fundamental yet complex biological processes found in nature. The central dogma of DNA polymerization is that the efficiency and fidelity of this biological process is dependent upon proper hydrogen-bonding interactions between an incoming nucleotide and its templating partner. However, the foundation of this dogma has been recently challenged by the demonstration that DNA polymerases can effectively and, in some cases, selectively incorporate non-natural nucleotides lacking classic hydrogen-bonding capabilities into DNA. In this review, we describe the results of several laboratories that have employed a variety of non-natural nucleotide analogs to decipher the molecular mechanism of DNA polymerization. The use of various non-natural nucleotides has lead to the development of several different models that can explain how efficient DNA synthesis can occur in the absence of hydrogen-bonding interactions. These models include the influence of steric fit and shape complementarity, hydrophobicity and solvation energies, base-stacking capabilities, and negative selection as alternatives to rules invoking simple recognition of hydrogen-bonding patterns. Discussions are also provided regarding how the kinetics of primer extension and exonuclease proofreading activities associated with high-fidelity DNA polymerases are influenced by the absence of hydrogen-bonding functional groups exhibited by non-natural nucleotides.  相似文献   

10.
The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) < Deep Vent (2.7 x 10(-6)) < Vent (2.8 x 10(-6)) < Taq (8.0 x 10(-6)) < < exo- Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at pH 8.5-9.1. Under these conditions, the error rate of exo- Pfu was approximately 40-fold higher (5 x 10(-5)) than the error rate of Pfu. As the reaction pH was raised from pH 8 to 9, the error rate of Pfu decreased approximately 2-fold, while the error rate of exo- Pfu increased approximately 9-fold. An increase in error rate with pH has also been noted for the exonuclease-deficient DNA polymerases Taq and exo- Klenow, suggesting that the parameters which influence replication error rates may be similar in pol l- and alpha-like polymerases. Finally, the fidelity of 'long PCR' DNA polymerase mixtures was examined. The error rates of a Taq/Pfu DNA polymerase mixture and a Klentaq/Pfu DNA polymerase mixture were found to be less than the error rate of Taq DNA polymerase, but approximately 3-4-fold higher than the error rate of Pfu DNA polymerase.  相似文献   

11.
Mechanisms for the fidelity of DNA replication in eucaryotes are not adequately understood. Certain hypotheses can be tested by examining whether the first nucleotide inserted is incorporated with a significantly higher error rate than subsequent nucleotides. Using synthetic oligodeoxynucleotides, we have measured the effect of primer position on single-base misinsertion frequencies at an amber site in phi X174 DNA. Our results show a lack of position effect, indicating that processivity and the most direct "energy relay" proofreading mechanisms are not important determinants in eucaryotic replication fidelity.  相似文献   

12.
13.
The fidelity of DNA synthesis with purified DNA polymerase alpha and beta from human placenta has been studied. With poly[d(A-T)] as the template-primer and Mg2+ as the metal activator, DNA polymerase alpha incorporates 1 mol of dGMP for every 6,000 to 12,000 mol of complementary nucleotides polymerized. Under the same conditions, DNA polymerase beta is more accurate, the error rate being 1/20,000 to 1/60,000. This greater accuracy of DNA polymerase beta is observed with a variety of homopolymer templates. With both enzymes, substitution of Mg2+ with activating concentrations of Mn2+ or Co2+ enhances the frequency of misincorporation. At greater than activating concentrations of Mn2+ and Co2+, there is an inhibition of complementary nucleotide incorporation, further increasing the frequency of misincorporation. Nearest neighbor analysis of the products synthesized with both enzymes indicates that the noncomplementary nucleotides are incorporated predominantly as single base substitutions. The greater accuracy of DNA polymerase beta over DNA polymerase alpha should be considered in relationship to their possible roles in DNA replication and repair.  相似文献   

14.
Two new species and one new subspecies of genus Capnuchosphaera, (Capnuchosphaera tumida nov. sp., C. waihekeensis nov. sp. and C. texensis australis nov. ssp.) are described herein from phosphatic nodules included in mudstone and sandstone beds of the Waipapa Terrane, Waiheke Island, New Zealand. The phosphatic nodules yielded a rich Late Triassic (Carnian-Norian) radiolarian fauna, with a high abundance of spumellarian taxa including numerous species of the genera Capnuchosphaera, Vinassaspongus, Kahlerosphaera, Sarla and Dumitricasphaera. Waiheke Island Capnuchosphaera are characterized by a large cortical shell and a distinctively low ratio of spine length to cortical shell diameter. These features differ significantly from those of Capnuchosphaera in the Tethyan Realm and are considered to be the result of adaptation to an Austral-New Zealand peripheral ocean of Gondwanaland in the Mesozoic Southern Hemisphere.  相似文献   

15.
Replication protein A (RPA) is an essential component of DNA metabolic processes. RPA binds to single-stranded DNA (ssDNA) and interacts with multiple DNA-binding proteins. In this study, we showed that two DNA polymerases, PolB and PolD, from the hyperthermophilic archaeon Thermococcus kodakarensis interact directly with RPA in vitro. RPA was expected to play a role in resolving the secondary structure, which may stop the DNA synthesis reaction, in the template ssDNA. Our in vitro DNA synthesis assay showed that the pausing was resolved by RPA for both PolB and PolD. These results supported the fact that RPA interacts with DNA polymerases as a member of the replisome and is involved in the normal progression of DNA replication forks.  相似文献   

16.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to alpha-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the alpha-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at 80 degrees C and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life (t(1/2)) values of 10 min at 90 degrees C, despite the high similarity to alpha-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermostability. The presence of Ca2+ seemed to be critical, significantly changing t(1/2) at 90 degrees C to 153 min by the addition of 0.5 mM Ca2+. On the other hand, the thermostability was not enhanced by the addition of Zn2+ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermostability, indicating that the residues involved in metal binding is very critical for the thermostability.  相似文献   

17.
Time-lapse X-ray crystallography allows visualization of intermediate structures during the DNA polymerase catalytic cycle. Employing time-lapse crystallography with human DNA polymerase β has recently allowed us to capture and solve novel intermediate structures that are not stable enough to be analyzed by traditional crystallography. The structures of these intermediates reveals exciting surprises about active site metal ions and enzyme conformational changes as the reaction proceeds from the ground state to product release. In this perspective, we provide an overview of recent advances in understanding the DNA polymerase nucleotidyl transferase reaction and highlight both the significance and mysteries of enzyme efficiency and specificity that remain to be solved.  相似文献   

18.
Francklyn CS 《Biochemistry》2008,47(45):11695-11703
DNA polymerases and aminoacyl-tRNA synthetases (ARSs) represent large enzyme families with critical roles in the transformation of genetic information from DNA to RNA to protein. DNA polymerases carry out replication and collaborate in the repair of the genome, while ARSs provide aminoacylated tRNA precursors for protein synthesis. Enzymes of both families face the common challenge of selecting their cognate small molecule substrates from a pool of chemically related molecules, achieving high levels of discrimination with the assistance of proofreading mechanisms. Here, the fidelity preservation mechanisms in these two important systems are reviewed and similar features highlighted. Among the noteworthy features common to both DNA polymerases and ARSs are the use of multidomain architectures that segregate synthetic and proofreading functions into discrete domains; the use of induced fit to enhance binding selectivity; the imposition of fidelity at the level of chemistry; and the use of postchemistry error correction mechanisms to hydrolyze incorrect products in a discrete editing domain. These latter mechanisms further share the common property that error correction involves the translocation of misincorporated products from the synthetic to the editing site and that the accuracy of the process may be influenced by the rates of translocation in either direction. Fidelity control in both families can thus be said to rely on multiple elementary steps, each with its contribution to overall fidelity. The summed contribution of these kinetic checkpoints provides the high observed overall accuracy of DNA replication and aminoacylation.  相似文献   

19.
We isolated active mutants in Saccharomyces cerevisiae DNA polymerase alpha that were associated with a defect in error discrimination. Among them, L868F DNA polymerase alpha has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase alpha. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase alpha-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase alpha catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3' T 26000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase eta, and the F34L mutant of S. cerevisiae DNA polymerase eta has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase alpha is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号