首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energetics of Isometric and Isotonic Twitches in Toad Sartorius   总被引:1,自引:0,他引:1       下载免费PDF全文
Contractile energetics have been studied in twitches of toad sartorius muscle at 6-7°C. Isometric and isotonic energy production has been measured and plotted against a wide range of developed tensions and tension-time integrals. These parameters were varied by altering the isotonic load or by changing the preset isometric length. The isometric tension-independent heat was 1.12 ±0.18 (SD) mcal/g. The isometric heat coefficient Pl0/H was 12.0 ±1.4 in muscles having twitch to tetanus ratios ranging from 0.4 to 0.6. Isometric enthalpy increased monotonically with tension or tension-time integral but the correlation between isometric heat and these parameters was poor. Isotonic enthalpy consumption was always higher than isometric enthalpy for any given tension or tension-time integral; however, isotonic heat production was consistently less than isometric heat production. The isotonic heat for the highest load (3 g) was not significantly different from the isometric tension-independent heat. Thus isotonic heat production first decreased and then increased with increasing tension or tension-time integral. In the discussion it is shown that the results conflict with all current interpretations of muscle energetics.  相似文献   

2.
An infrared radiation-detecting system was used to measure initial heat production in bull frog sartorius muscle at 15°C. Numerous tests with the system showed that thermal artifacts were not noticeable. Many previous measurements with myothermic thermopiles were corroborated with this method. In addition, a cooling phase as large as 0.39 of peak exothermicity was found during and after relaxation. Cooling diminished with both increasing sarcomere length and increasing duration of mechanical activity. No large rapid increase in heat rate accompanied a 0.6 reactivation at the peak of twitch tension. Above rest length, initial heat rate and the heat produced up to the peak of tension decreased nearly proportionally with overlap of myofilaments, while the total twitch initial heat decreased slightly.  相似文献   

3.

1. 1.|Dinitrophenol (DNP) was administered to rats in two equal dosages (20 mg/kg, 30 min interval); the second injection was followed immediately by exercise (9.14 m/min) in the heat (30°C) or at room temperature (21°C).

2. 2.|At 21°C control (saline-treated) rats manifested a mean endurance of 94 min which was reduced to 32 min among DNP-treated animals.

3. 3.|At 30°C, control rats ran for 65 min (δTre/min = 0.05°C) while DNP-treated animals had a mean endurance of only 12 min (δTre/min = 0.22°C).

4. 4.|DNP-treated rats (30°C) manifested no decrements in tail-skin heat loss (δTsk/min = 0.17°C vs 0.10°C) or saliva secretion (0.78 g/min, DNP vs. 0.19 g/min, control) for their brief treadmill duration.

5. 5.|The increased metabolic heat production of DNP severely reduced performance.

Author Keywords: Dinitrophenol; exercise; heat stress; endurnace; temperature regulation  相似文献   


4.
Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21°C to 28°C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40±1%) and dark cycle energy expenditure (15±3%) at normal ambient temperature (21°C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65±7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14±2% at 21°C; 21±4% at 28°C), while food intake was reduced during the dark cycle (0.9±0.1 g) in mice housed at 28°C, but during the light cycle (0.3±0.1 g) in mice housed at 21°C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R2 = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure.  相似文献   

5.
We have shown that cutaneous cooling-sensitive receptors can work as thermostats of skin temperature against cooling. However, molecule of the thermostat is not known. Here, we studied whether cooling-sensitive TRPM8 channels act as thermostats. TRPM8 in HEK293 cells generated output (y) when temperature (T) was below threshold of 28.4°C. Output (y) is given by two equations: At T >28.4°C, y = 0; At T <28.4°C, y  =  -k(T – 28.4°C). These equations show that TRPM8 is directional comparator to elicits output (y) depending on negative value of thermal difference (ΔT  =  T – 28.4°C). If negative ΔT-dependent output of TRPM8 in the skin induces responses to warm the skin for minimizing ΔT recursively, TRPM8 acts as thermostats against cooling. With TRPM8-deficient mice, we explored whether TRPM8 induces responses to warm the skin against cooling. In behavioral regulation, when room temperature was 10°C, TRPM8 induced behavior to move to heated floor (35°C) for warming the sole skin. In autonomic regulation, TRPM8 induced activities of thermogenic brown adipose tissue (BAT) against cooling. When menthol was applied to the whole trunk skin at neutral room temperature (27°C), TRPM8 induced a rise in core temperature, which warmed the trunk skin slightly. In contrast, when room was cooled from 27 to 10°C, TRPM8 induced a small rise in core temperature, but skin temperature was severely reduced in both TRPM8-deficient and wild-type mice by a large heat leak to the surroundings. This shows that TRPM8-driven endothermic system is less effective for maintenance of skin temperature against cooling. In conclusion, we found that TRPM8 is molecule of thermostat of skin temperature against cooling.  相似文献   

6.
The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3+CD4+ T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO2max) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30–50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3+ and CD4+ (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70+ lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.  相似文献   

7.
In laboratories, mice are housed at 20–24°C, which is below their lower critical temperature (≈30°C). This increased thermal stress has the potential to alter scientific outcomes. Nesting material should allow for improved behavioral thermoregulation and thus alleviate this thermal stress. Nesting behavior should change with temperature and material, and the choice between nesting or thermotaxis (movement in response to temperature) should also depend on the balance of these factors, such that mice titrate nesting material against temperature. Naïve CD-1, BALB/c, and C57BL/6 mice (36 male and 36 female/strain in groups of 3) were housed in a set of 2 connected cages, each maintained at a different temperature using a water bath. One cage in each set was 20°C (Nesting cage; NC) while the other was one of 6 temperatures (Temperature cage; TC: 20, 23, 26, 29, 32, or 35°C). The NC contained one of 6 nesting provisions (0, 2, 4, 6, 8, or 10g), changed daily. Food intake and nest scores were measured in both cages. As the difference in temperature between paired cages increased, feed consumption in NC increased. Nesting provision altered differences in nest scores between the 2 paired temperatures. Nest scores in NC increased with increasing provision. In addition, temperature pairings altered the difference in nest scores with the smallest difference between locations at 26°C and 29°C. Mice transferred material from NC to TC but the likelihood of transfer decreased with increasing provision. Overall, mice of different strains and sexes prefer temperatures between 26–29°C and the shift from thermotaxis to nest building is seen between 6 and 10 g of material. Our results suggest that under normal laboratory temperatures, mice should be provided with no less than 6 grams of nesting material, but up to 10 grams may be needed to alleviate thermal distress under typical temperatures.  相似文献   

8.
Ronggai Li 《Cytotechnology》2015,67(6):987-993
A practical method was developed for the transient transfection of Chinese hamster ovary (CHO) cells with 25 kDa linear polyethylenimine (PEI) then optimal culture conditions determined for the production of rainbow trout (Oncorhynchus mykiss) IFN-γ recombinant protein. We found that culture temperature had a significant impact upon recombinant protein yield, with best results being obtained at 32 °C. However the amount of serum added to the culture medium had no effect upon recombinant IFN-γ (rIFN-γ) production. In this study maximal rIFN-γ yields and minimal PEI toxicity were achieved using a DNA/PEI ratio of 1:8, where the amount of PEI did not exceed 10 µg per 5 ml of RPMI1640 culture medium, with cells subsequently cultured at 32 °C for 7 days. Thus, linear PEI is a technically simple and cost-efficient method for the transient transfection of CHO cells and is compatible with serum-free operations.  相似文献   

9.
Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the thermal tolerance of Pekin and Muscovy ducks exposed to acute heat stress. Ducks were exposed to heat at 39 ± 0.5 °C for 1 h and then returned to 20 °C for 1 h followed by a 3-h recovery period. The liver and other tissues were collected from each individual for analysis. The mRNA levels of HSPs (70, 60, and 40) increased in both species, except for HSP10, which was upregulated in Muscovy ducks and had no difference in Pekin ducks after heat stress. Simultaneously, the mRNA level of HSP90 decreased in the stress group in both species. Morphological analysis indicated that heat stress induced tissue injury in both species, and the liver of Pekin ducks was severely damaged. The activities of several antioxidant enzymes increased in Muscovy duck liver, but decreased in Pekin duck. The mRNA levels of inflammatory factors were increased after heat stress in both duck species. These results suggested that heat stress could influence HSPs, inflammatory factors expression, and the activities of antioxidant enzymes. Moreover, the differential response to heat stress indicated that the Muscovy duck has a better thermal tolerance than does the Pekin duck.  相似文献   

10.
The brown planthopper Nilaparvata lugens (Stål) is the most serious pest of rice across the world, especially in tropical climates. N. lugens nymphs and adults were exposed to high temperatures to determine their critical thermal maximum (CTmax), heat coma temperature (HCT) and upper lethal temperature (ULT). Thermal tolerance values differed between developmental stages: nymphs were consistently less heat tolerant than adults. The mean (± SE) CTmax of nymphs and adult females and males were 34.9±0.3, 37.0±0.2 and 37.4±0.2°C respectively, and for the HCT were 37.7±0.3, 43.5±0.4 and 42.0±0.4°C. The ULT50 values (± SE) for nymphs and adults were 41.8±0.1 and 42.5±0.1°C respectively. The results indicate that nymphs of N. lugens are currently living at temperatures close to their upper thermal limits. Climate warming in tropical regions and occasional extreme high temperature events are likely to become important limiting factors affecting the survival and distribution of N. lugens.  相似文献   

11.

Background

Central administration of γ-amino butyric acid (GABA) induces lower body temperature in animals in hot ambient air. However, it is still unknown whether oral GABA administration affects temperature regulation at rest in a hot environment in humans. Therefore, in the present study, we specifically hypothesized that systemic administration of GABA in humans would induce hypothermia in a hot environment and that this response would be observed in association with decreased heat production.

Methods

Eight male participants drank a 200-ml sports drink with 1 g of GABA (trial G) or without GABA (trial C), then rested for 30 minutes in a sitting position in a hot environment (ambient air temperature 33°C, relative humidity 50%).

Results

We found that changes in esophageal temperature from before drinking the sports drink were lower in trial G than in trial C (-0.046 ± 0.079°C vs 0.001 ± 0.063°C; P < 0.05), with lower heat production calculated by oxygen consumption (41 ± 5 W/m2 vs 47 ± 8 W/m2; P < 0.05).

Conclusions

In this study, we have demonstrated that a single oral administration of GABA induced a larger decrease in body core temperature compared to a control condition during rest in a hot environment and that this response was concomitant with a decrease in total heat production.  相似文献   

12.
The molecular mechanisms that initiate the inflammatory response in heatstroke and their relation with tissue injury and lethality are not fully elucidated. We examined whether endogenous ligands released by damaged/stressed cells such as high-mobility group box 1 (HMGB1) signaling through Toll-like receptor 4 (TLR4) may play a pathogenic role in heatstroke. Mutant TLR4-defective (C3H/HeJ) and wild type (C3H/HeOuJ) mice were subjected to heat stress in an environmental chamber pre-warmed at 43.5°C until their core temperature reached 42.7°C, which was taken as the onset of heatstroke. The animals were then allowed to recover passively at ambient temperature. A sham-heated group served as a control. Mutant mice displayed more histological liver damage and higher mortality compared with wild type mice (73% vs. 27%, respectively, P<0.001). Compared to wild type mice, mutant mice exhibited earlier plasma release of markers of systemic inflammation such as HMGB1 (206±105 vs. 63±21 ng/ml; P = 0.0018 and 209±100 vs. 46±32 ng/ml; P<0.0001), IL-6 (144±40 vs. 46±20 pg/ml; P<0.001 and 184±21 vs. 84±54 pg/ml; P = 0.04), and IL-1β (27±4 vs. 1.7±2.3 pg/ml; P<0.0001 at 1 hour). Both strains of mice displayed early release of HMGB1 into the circulation upstream of IL-1β and IL-6 responses which remained elevated up to 24 h. Specific inhibition of HMGB1 activity with DNA-binding A Box (600 µg/mouse) protected the mutant mice against the lethal effect of heat stress (60% A Box vs. 18% GST protein, P = 0.04). These findings suggest a protective role for the TLR4 in the host response to severe heat stress. They also suggest that HMGB1 is an early mediator of inflammation, tissue injury and lethality in heatstroke in the presence of defective TLR4 signaling.  相似文献   

13.
In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL−1; p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL−1; p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = −0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.  相似文献   

14.

Background

Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥8°C in sub-polar waters and ≤4°C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved.

Methodology/Principal Findings

We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (< 25°C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3°C was maintained between body and environment. In warm water (25 – 31°C), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5°C). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2°C in cold sub-polar waters.

Conclusions/Significance

In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment.  相似文献   

15.
Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = −14.8 ± 3.3°C and −6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions, and behavioral responses may alter predictions of studies that ignore these biological details.  相似文献   

16.
ObjectiveTo evaluate the agreement between temperature measured at the axilla and rectum in children and young people.DesignA systematic review of studies comparing temperature measured at the axilla (test site) with temperature measured at the rectum (reference site) using the same type of measuring device at both sites in each patient. Devices were mercury or electronic thermometers or indwelling thermocouple probes.Results20 studies (n=3201 (58%) participants) had sufficient data to be included in a meta-analysis. There was significant residual heterogeneity in both mean differences and sample standard deviations within the groups using different devices and within age groups. The pooled (random effects) mean temperature difference (rectal minus axillary temperature) for mercury thermometers was 0.25°C (95% limits of agreement −0.15°C to 0.65°C) and for electronic thermometers was 0.85°C (−0.19°C to 1.90°C). The pooled (random effects) mean temperature difference (rectal minus axillary temperature) for neonates was 0.17°C (−0.15°C to 0.50°C) and for older children and young people was 0.92°C (−0.15°C to 1.98°C).ConclusionsThe difference between temperature readings at the axilla and rectum using either mercury or electronic thermometers showed wide variation across studies. This has implications for clinical situations where temperature needs to be measured with precision.  相似文献   

17.
Focal inflammation causes systemic fever. Cancer hyperthermia therapy results in shrinkage of tumors by various mechanisms, including induction of adaptive immune response. However, the physiological meaning of systemic fever and mechanisms of tumor shrinkage by hyperthermia have not been completely understood. In this study, we investigated how heat shock influences the adaptive immune system. We established a cytotoxic T lymphocyte (CTL) clone (#IM29) specific for survivin, one of the tumor-associated antigens (TAAs), from survivin peptide-immunized cancer patients’ peripheral blood, and the CTL activities were investigated in several temperature conditions (37–41 °C). Cytotoxicity and IFN-γ secretion of CTL were greatest under 39 °C condition, whereas they were minimum under 41 °C. To address the molecular mechanisms of this phenomenon, we investigated the apoptosis status of CTLs, expression of CD3, CD8, and TCRαβ by flow cytometry, and expression of perforin, granzyme B, and Fas ligand by western blot analysis. The expression of perforin and granzyme B were upregulated under temperature conditions of 39 and 41 °C. On the other hand, CTL cell death was induced under 41 °C condition with highest Caspase-3 activity. Therefore, the greatest cytotoxicity activity at 39 °C might depend on upregulation of cytotoxic granule proteins including perforin and granzyme B. These results suggest that heat shock enhances effector phase of the adaptive immune system and promotes eradication of microbe and tumor cells.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-012-0348-0) contains supplementary material, which is available to authorized users.  相似文献   

18.
Curcuma comosa has long been used as a gynecological medicine. Several diarylheptanoids have been purified from this plant, and their pharmacological effects were proven. However, there is no information about the absorption of C. comosa components to support the formulation usage. In the present study, C. comosa hexane extract and the mixture of its two major compounds, (4E,6E)-1,7-diphenylhepta-4,6-dien-3-ol (DA1) and (6E)-1,7-diphenylhept-6-en-3-ol (DA2), were formulated into nanoemulsions. The physical properties of the nanoemulsions and the in situ intestinal absorptions of DA1 and DA2 were evaluated. The results demonstrated the mean particle sizes at 0.207 ± 0.001 and 0.408 ± 0.014 μm, and the zeta potential at −14.57 ± 0.85 and −10.47 ± 0.32 mV for C. comosa nanoemulsion (C.c-Nano) and mixture of diarlylheptanoid nanoemulsions (DA-Nano), respectively. The entrapments of DA1 and DA2 were 76.61% and 75.41%, and 71.91% and 71.63% for C.c-Nano and DA-Nano, respectively. The drug loading ratios of DA1 and DA2 were 351.47 and 614.53 μg/mg, and 59.48 and 126.72 μg/mg for C.c-Nano and DA-Nano. The intestinal absorption rates of DA1 and DA2 were 0.329 ± 0.015 and 0.519 ± 0.026 μg/min/cm2 in C.c-Nano, and 0.380 ± 0.006 and 0.428 ± 0.036 μg/min/cm2 in DA-Nano, which were five to ten times faster than those in oil. In conclusion, the formulation in nanoemulsion forms obviously increased the intestinal absorption rate of diarylheptanoids.KEY WORDS: Curcuma comosa, diarylheptanoids, intestinal absorption, nanoemulsion, phytoestrogen  相似文献   

19.
Extracellular heat shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50 % in three conditions (TEMP, 20 °C/63 % RH; HOT, 30.2 °C/51%RH; VHOT, 40.0 °C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4 %) (p < 0.05), but not TEMP (−1.9 %) or HOT (+25.7 %) conditions. eHsp72 returned to baseline values within 24 h in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5 and 39.0 °C, duration Trec ≥ 38.5 and ≥39.0 °C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature.  相似文献   

20.
Luo HB  Ma L  Xi HF  Duan W  Li SH  Loescher W  Wang JF  Wang LJ 《PloS one》2011,6(8):e23033

Background

The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures.

Methodology/Findings

The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P n). However, with treatments at 40 and 45°C, P n was decreased, accompanied by an increase in substomatal CO2 concentration (C i), decreases in stomatal conductance (g s) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P n, gs and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P n during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco.

Conclusions

Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P n in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P n in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号