首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Labelling with stable isotopes has under-exploited potential for studies of polysaccharide endotransglycosylation in vivo. Ideally, the labelled polysaccharides should have the highest possible buoyant density. Although [13C6]glucose has previously been used as a precursor, it was unclear whether 2H would be efficiently incorporated from [2H]glucose or lost as D2O. Rose (Rosa sp.) cell-suspension cultures efficiently incorporated 13C from D-[13C6,2H7]glucose into wall polysaccharides with negligible dilution from atmospheric 12CO2. Also, approximately 70% of the 2H atoms in D-[13C6,2H7]glucose were retained during polysaccharide biosynthesis. This shows that relatively few cycles of intermediary metabolism leading to the release of D2O occurred before sugar residues were incorporated into wall polysaccharides. In agreement with these observations, isopycnic centrifugation in caesium trifluoroacetate gradients showed that the hydrated buoyant density of xyloglucan synthesised by rose cells growing on [13C6,2H7]glucose and [13C6]glucose was 3.7 and 2.6% higher, respectively, than in isotopically non-labelled cultures. Thus, [13C,2H]glucose-feeding enabled a 42% better resolution of 'heavy' from 'light' xyloglucan than [13C]glucose-feeding.  相似文献   

2.
1. Subcellular fractionation of maize roots resulted in the isolation of the following enriched fractions: cell wall, dictyosome, smooth-membrane and rough-microsomal fractions. In addition, extracellular polysaccharide of the root slime was isolated. 2. Maizeseedling roots were incubated in vivo with d-[U-(14)C]glucose, and the pattern of incorporation of radioactivity into the polysaccharides of each fraction was investigated. 3. The differentiation of maize-root cells with respect to the synthesis of specific extracellular polysaccharide directly relates to the polysaccharide synthesized and transported within the membrane system of the cell. A fucose-containing polysaccharide, characteristic only of root slime, was present only in the membrane system of the root-tip region of the root. Regions of typical secondary wall development within the root were characterized by an increased incorporation of radioactivity into xylose of polysaccharide within the membrane system. 4. The incorporation of radioactivity into glucan polymers in the membrane fractions was very low in all regions of the root. Since in regions of secondary wall development greater than 60% of all radioactive incorporation was into a glucan polymer, it can be inferred that this polymer, most probably cellulose, is not synthesized or transported within the compartments of the membrane system. It is suggested that synthesis of cellulose occurs at the surface of the plasmalemma. 5. Maize-root cells contained 40 times more rough endoplasmic reticulum than dictyosome membrane. The relative specific radioactivities of each fraction indicated that polysaccharide was concentrated in the region of the Golgi apparatus, which showed a 100% increase in specific radioactivity compared with the rough endoplasmic reticulum. The Golgi apparatus can thus be regarded as a localized focal point on the synthetic and transport system of polysaccharide by the intracellular membrane compartments.  相似文献   

3.
Characterization of two cell-wall polysaccharides from Fusicoccum amygdali   总被引:1,自引:1,他引:0  
1. The nature of two polysaccharides (s(0) (20) values 6S and 2S respectively in 1m-sodium hydroxide), comprising a fragment (fraction BB, [alpha](D) +236 degrees in 1m-sodium hydroxide), previously isolated from cell walls of Fusicoccum amygdali, has been investigated. 2. Both the major (2S) and minor (6S) components were affected by incubation with alpha-amylase. The 6S polysaccharide was also attacked by exo-beta-(1-->3)-glucanase, which is evidence that it contained both alpha-(1-->4)- and beta-(1-->3)-glucopyranose linkages. By fractionation of the products of alpha-amylase-treated fraction BB it was possible to obtain a water-insoluble polysaccharide, fraction P ([alpha](D) +290 degrees in 1m-sodium hydroxide, 67% of fraction BB) and a water-soluble polysaccharide, fraction Q ([alpha](D) +16 degrees in 1m-sodium hydroxide, 11% of fraction BB), both of which sedimented as single boundaries with s(0) (20) values (in 1m-sodium hydroxide) of 1.7S and 4.6S respectively. 3. Evidence from periodate oxidation, methylation analysis, i.r. spectroscopy and partial acid hydrolysis showed that fraction P consisted of linear chains of alpha-(1-->3)-glucopyranose units with blocks of one or two alpha-(1-->4)-glucopyranose units interspersed at intervals along the main chain. The 2S polysaccharide, from which fraction P is derived, evidently also contains longer blocks of alpha-(1-->4)-glucopyranose units, that are susceptible to alpha-amylase action. 4. Fraction Q consisted of glucose (88%) with small amounts of galactose, mannose and rhamnose. Evidence from digestion with exo- and endo-beta-(1-->3)-glucanases, periodate oxidation and methylation analysis suggests that fraction Q consists of a branched galactomannorhamnan core, to which is attached a beta-(1-->3)-, beta-(1-->6)-glucan. In the cell wall, chains of alpha-(1-->4)-linked glucopyranose units are linked to fraction Q to form the 6S component of fraction BB.  相似文献   

4.
The synthesis of the major linkage found in yeast cell wall structural polysaccharides, glucosyl-beta-(1 leads to 3)-glucosyl, was studied with a membrane preparation from Saccharomyces cerevisiae. The sugar donor was UDP-glucose, and the reaction required addition of glycerol bovine serum albumin, and ATP or GTP for maximal activity. Under optimal conditions, extremely efficient glucose transfer was obtained, with 20 to 50% of the substrate utilized in 20 min at 30 degrees C. The polysaccharide formed in the reaction was insoluble in water and soluble in alkali; it was characterized enzymatically and chemically as a beta-(1 leads to 3)-linked linear glucan of chain length 60 to 80. The terminal reducing group was found to be labeled with 14C, as was the substrate used; therefore, the polysaccharide is synthesized de novo. For each glucosyl group transferred, one equivalent of UDP was formed. No evidence was found for a lipid-linked intermediate. When yeast protoplast lysates were subjected to fractionation by centrifugation in Renografin gradients, glucan synthetase was found in the plasma membrane fraction, with the same distribution and sidedness as chitin synthetase. Because of the spatially restricted growth of the cell wall during cell division in budding yeasts, this result suggests localized and reversible activation of the enzyme during the cell cycle.  相似文献   

5.
1. Three soluble polysaccharides and a soluble protein containing hydroxyproline were secreted by sycamore suspension cultures. l-[1-(3)H]Fucose was incorporated solely into the fucose of fucoxyloglucan and l-[1-(14)C]arabinose mainly into the arabinose of arabino-galactan. [U-(14)C]Glucose was a general precursor for soluble protein and polysaccharides. 2. The steady-state rate of secretion of all the polymers was increased within seconds of adding various electrolytes and polyelectrolytes to the growth medium. The increased secretion was induced by cations at the outer surface of the plasma membrane. It was brought about by a stimulation of the normal mechanisms of cell-wall polysaccharide secretion. It was partly inhibited by anaerobiosis or sodium arsenate and was unaffected by temperature changes in the range 0-35 degrees C. 3. The precursor pool from which secretion was induced contained completely synthesized polysaccharides and was probably located in the Golgi-derived vesicles. The results indicated that the endoplasmic reticulum did not secrete polysaccharide directly to the cell exterior. 4. The various cations probably induced secretion by causing a depolarization of the negative electric potential of the cell surface, and this resulted in the fusion of vesicles with the plasma membrane. 5. Analogy with exocytosis and pinocytosis in various animal tissues suggested that the decreased surface potential brought about membrane fusion by causing an increase in plasma-membrane permeability to Ca(2+). 6. The results showed that the fusion of vesicles with the plasma membrane was rate-limiting and a potential control point. Auxin-stimulated cell-wall deposition could be a result of a stimulated influx of Ca(2+) causing vesicle fusion with the plasma membrane.  相似文献   

6.
Anti-tumor active polysaccharide against Sarcoma 180 was isolated by DEAE-Sepharose CL-6B and Sepharose 4B column chromatography from the hot-water soluble fraction of the mycelium of liquid-cultured Agaricus blazei mill. This polysaccharide did not react with antibodies of anti-tumor polysaccharides such as lentinan, gliforan, and FIII-2-b which is one of anti-tumor polysaccharides from Agaricus blazei. Moreover, the analyses of 13C-NMR and GC-MS suggested that this polysaccharide was preliminarily glucomannan with a main chain of beta-1,2-linked D-mannopyranosyl residues and beta-D-glucopyranosyl-3-O-beta-D-glucopyranosyl residues as a side chain. This polysaccharide was completely different from the anti-tumor polysaccharide from fruiting body of Agaricus blazei, beta-1,6-glucan.  相似文献   

7.
The free monosaccharide content of C. lipolytica (strain 4 124) cells grown on n-hexadecane was identified and found to be only glucose. The chromatographic analysis of the hydrolysate of intracellular cell wall polysaccharides indicated the presence of glucose: mannose: galactose: xylose in a ratio of 1 : 1.32 : 1.07 : 0.35. Paper and dise electrophoresis of extracellular polysaccharid from the culture broth was found to be heterogeneous. Ethanol fractionation separated it to a major component F (I) 81.99% and a minor one F (II) 13.04%. Analysis of the major fraction showed that it consisted of galactose and mannose only while the minor polysaccharide consisted of galactose, glucose and mannose. Thus it was concluded that the predominant sugar in both extracellular and intracellular polysaccharides was mannose. Xylose was detected in the intracellular polysaccharide only.  相似文献   

8.
The Hindak strain of a Cryptomonas species (Cryptophyceae) produces extracellular polysaccharides. Because there is no information on the structure of these compounds in the Cryptophyceae we conducted structural studies. Gas–liquid chromatographic analyses showed that the polysaccharide is composed of fucose, rhamnose, xylose, mannose, glucose, galactose, galacturonic acid, glucuronic acid, and traces of 3-O-methyl galactose. The polysaccharide was separated into two subtractions by ion-exchange chromatography. Fraction A consisted mainly of 1,3-linked galactose units and 1,4-linked galacturonic acid. Unlike fraction B, fraction A did not have xylose, 3-O-methyl galactose, or glucuronic acid. Also, its degree of branching was low compared to that of fraction B. Only traces of sulfate were present infraction A, but fraction B was 10–15% sulfated. Protein was approximately 1% in both fractions. These polysaccharides appear to be a novel type of polymer in algae.  相似文献   

9.
1. Mycobacterium tuberculosis BCG was usually grown in glycerol-asparagine-casein hydrolysate medium. A soluble fraction was obtained from the cells with aq. 50% ethanol; unbound lipids were then removed and the cells were treated with dilute alkali to give, after acidification, an alkali-extractable fraction and an insoluble fraction. On occasion, lipopolysaccharides were obtained by extracting with phenol or dimethyl sulphoxide instead of alkali. The soluble fraction contained, particularly after long extraction, polysaccharide containing mainly glucose, in addition to trehalose and monosaccharides and their derivatives. The alkali-extractable fraction contained polysaccharides containing mannose, glucose, arabinose, galactose and 6-O-methylglucose. These could be resolved into three fractions of markedly different molecular size. It is argued that the high-molecular-weight materials originated from the outside of the cell envelope and the medium-molecular-weight materials from a middle layer of the envelope. 2. Exposure of the growing cells to isoniazid, usually at 1 or 10mug/ml for 6-12h, increased the total cell carbohydrate, mainly due to an increase in trehalose and in insoluble glucan. It also facilitated the extraction of polysaccharide into the medium and the soluble fraction. This produced about a 25% decrease in the amount of carbohydrate in the alkaline-extractable fraction, mainly due to a fall in glucose, arabinose and 6-O-methylglucose. The decrease was confined to polysaccharides of large and medium molecular weight. When intact lipopolysaccharides were extracted, their amount was also decreased by isoniazid. 3. Substitution of ammonium sulphate for asparagine and casein hydrolysate in the medium, so that glycerol was the sole carbon source, decreased the carbohydrate accumulation brought about by isoniazid but did not alter its effect on polysaccharide extraction. 4. Growth with (14)C-labelled substrates showed that glycerol provided two to four times as much of the cell carbon as did asparagine, when both were present. Under these conditions isoniazid inhibited the incorporation of carbon atoms from asparagine into the cells, but had little effect on the total incorporation from glycerol. These experiments also showed that the effect of isoniazid on alkali-extractable polysaccharides was due to their loss to the soluble fraction and external medium. 5. It is suggested that isoniazid inhibits a pathway (probably the synthesis of mycolic acid) involved in the formation of the cell envelope, and that this inhibition results in some re-channelling of intermediates into carbohydrate synthesis and in some loss of polysaccharides through damage to the envelope.  相似文献   

10.
采用超微粉碎、热水浸提法从紫芝子实体水提残渣中获得细胞壁粗多糖,通过30%乙醇沉淀、20%醇洗的方法纯化出大分子量均一多糖GSCW30E-20E。苯酚硫酸法检测其多糖含量为98.03%,单糖组成分析显示其仅由葡萄糖组成,高效凝胶尺寸排阻色谱-多角度激光散射仪-示差折光检测技术测定其重均分子量为1.552×10 6g/mol。通过红外光谱、甲基化及核磁共振分析对其结构进行解析,结果表明,GSCW30E-20E是一种β-D-葡聚糖,该多糖主链由β-(1,3)-糖苷键连接而成,每3个糖残基主链上通过β-(1,6)-糖苷键连有一个葡萄糖残基为支链。  相似文献   

11.
Leung MY  Liu C  Zhu LF  Hui YZ  Yu B  Fung KP 《Glycobiology》2004,14(6):501-510
Three purified polysaccharide fractions designated as PAC-I, PAC-II, and PAC-III were prepared from Aloe vera L. var. chinensis (Haw.) Berg. by membrane fractionation and gel filtration HPLC. The polysaccharide fractions had molecular weights of 10,000 kDa, 1300 kDa, and 470 kDa, respectively. The major sugar residue in the polysaccharide fractions is mannose, which was found to be 91.5% in PAC-I, 87.9% in PAC-II, and 53.7% in PAC-III. The protein contents in the polysaccharide fractions was undetectable. NMR study of PAC-I and PAC-II demonstrated the polysaccharides shared the same structure. The main skeletons of PAC-I and PAC-II are beta-(1-->4)-D linked mannose with acetylation at C-6 of manopyranosyl. The polysaccharide fractions stimulated peritoneal macrophages, splenic T and B cell proliferation, and activated these cells to secrete TNF-alpha, IL-1 beta, INF-gamma, IL-2, and IL-6. The polysaccharides were nontoxic and exhibited potent indirect antitumor response in murine model. PAC-I, which had the highest mannose content and molecular weight, was found to be the most potent biological response modifier of the three fractions. Our results suggested that the potency of aloe polysaccharide fraction increases as mannose content and molecular weight of the polysaccharide fraction increase.  相似文献   

12.
Cell-free extracts from Saccharomyces cerevisiae catalyzed the incorporation of glucosyl residues from UDP-[U-14C]glucose into beta-1,3-glucans which contained a significant proportion of beta-1,6-glycosidic linkages. When GDP-[U-14C]glucose was used as substrate only trace amounts of glucose were incorporated. Activity of beta-glucan synthetase was distributed among membrane and cell wall fractions, specific activity being higher in this latter. Beta-glucan synthesized by membrane and cell wall fractions contained 0.6% and 2.5% of beta-1,6-glycosidic linkages respectively. A marked decrease in the activity of beta-glucan synthetase occurred as the cells aged. Significant activity of glycogen synthetase was detected only in cells which had reached the stationary phase of growth.  相似文献   

13.
Glycogen synthase of bovine retina was found associated with the acid-insoluble and acid-soluble proteoglycogen fractions. The synthase associated with the acid-insoluble proteoglycogen precursor showed an 8-fold lower Km for UDP-glucose than the synthase associated with the acid-soluble fraction, and was inhibited by detergent. A short digestion with pronase resulted in conversion of the acid insoluble fraction into acid-soluble. The results lead us to postulate that the acid-insolubility of the proteoglycogen fraction and the association with retina membrane proposed before, is caused by glycogen synthase strongly associated to its polysaccharide moiety. The enlargement of the polysaccharide moiety during proteoglycogen biosynthesis, from glycogenin linked to a few 11 to 12 glucose units to the acid-insoluble proteoglycogen precursor (Mr 470,000) would be carried out, together with the branching enzyme, by the glycogen synthase showing a low Km for UDP-glucose. The glycogen synthase with the highest Km for UDP-glucose would participate in conversion of the precursor into mature acid-soluble proteoglycogen.  相似文献   

14.
Phenol-extractable polysaccharides firmly associated with the outer membrane of the gliding bacterium Cytophaga johnsonae could be resolved by gel filtration in sodium dodecyl sulfate (SDS) or by SDS-polyacrylamide gel electrophoresis into a high-molecular-weight (H) fraction (excluded by Sephadex G-200) and a low-molecular-weight (L) fraction. Fraction L was rich in components typical of lipid A and the core region of lipopolysaccharide (P, 3-hydroxy fatty acids, and 2-keto-3-deoxyoctonate) and evidently was a lipopolysaccharide with a limited number of distal, repeating polysaccharide units, as judged by SDS-polyacrylamide gel electrophoresis. In relation to total carbohydrate, the H fraction was rich in amino sugar but poor in (possibly devoid of) the lipid A and core components. Two nongliding mutants were highly deficient in the H fraction; one of these was deficient in sulfonolipid but could be cured by provision of a specific sulfonolipid precursor, a process that also resulted in the return of both the H fraction and gliding, as well as the ability to move polystyrene latex spheres over the cell surface. Hence, the polysaccharide may be the component that is directly involved in motility, and the presence of sulfonolipids in the outer membrane is necessary for the synthesis or accumulation of the polysaccharide. This conclusion was reinforced by the fact that the second nongliding, polysaccharide-deficient mutant had a normal sulfonolipid content.  相似文献   

15.
为探讨常压室温等离子体诱变的3株高产多糖猴头菌和出发菌株的多糖组分差异,通过液体发酵获得的菌丝体经水提、分级醇沉获得8个胞内多糖组分,对它们的理化性质、结构特征及体外免疫活性进行了研究。结果表明,3株ARTP诱变菌株414、321、236菌丝体多糖含量较出发菌株有较明显提升;ARTP诱变的猴头菌20%醇沉多糖组分较出发菌株分子量大,所占比例增加;诱变菌株60%醇沉多糖组分的分子量略大于出发菌株,所占比例相近。20%醇沉多糖主要由半乳糖、葡萄糖、甘露糖构成,诱变菌株该多糖组分中葡萄糖和甘露糖的比例较出发菌株均有明显提升,60%醇沉多糖组分单糖组成无明显差异;8个多糖组分均具有体外刺激巨噬细胞释放NO的活性,其中20%醇沉多糖的活性优于60%醇沉多糖,诱变菌株的生物活性优于出发菌株。本研究探讨了ARTP诱变对猴头菌胞内多糖结构及活性的影响,为猴头菌相关产品的开发提供了优质资源。  相似文献   

16.
Smooth-type lipopolysaccharide (LPS) of Burkholderia pseudomallei has been reported to contain two kinds of O-antigenic polysaccharides, a 1,3-linked homopolymer of 6-deoxy-heptose and a polymer with a repeating unit of -->3)-glucose-(1-->3)-6-deoxy-talose-(1--> with O-acetyl or O-methyl modifications. A LPS preparation containing these two polysaccharides was separated by gel-permeation chromatography in this study. Chemical analysis of the separated fractions revealed the 6-deoxy-heptan [corrected] to be a polysaccharide without a lipid portion and the polymer of glucose and 6-deoxy-talose to be an O-antigenic polysaccharide of the LPS. This result was further supported by the assay of these polysaccharide molecules for macrophage activation activity. The 6-deoxy-heptan [corrected] showed no macrophage activation, indicating that this polysaccharide was not the LPS, but one of the capsular polysaccharides of B. pseudomallei.  相似文献   

17.
Bradyrhizobium japonicum USDA 110 synthesized both extracellular and periplasmic polysaccharides when grown on mannitol minimal medium. The extracellular polysaccharides were separated into a high-molecular-weight acidic capsular extracellular polysaccharide fraction (90% of total hexose) and three lower-molecular-weight glucan fractions by liquid chromatography. Periplasmic glucans, extracted from washed cells with 1% trichloroacetic acid, gave a similar pattern on liquid chromatography. Linkage analysis of the major periplasmic glucan fractions demonstrated mainly 6-linked glucose (63 to 68%), along with some 3,6- (8 to 18%), 3- (9 to 11%), and terminal (7 to 8%) linkages. The glucose residues were beta-linked as shown by H-nuclear magnetic resonance analysis. Glucan synthesis by B. japonicum cells grown on mannitol medium with 0 to 350 mM fructose as osmolyte was measured. Fructose at 150 mM or higher inhibited synthesis of periplasmic and extracellular 3- and 6-linked glucans but had no effect on the synthesis of capsular acidic extracellular polysaccharides.  相似文献   

18.
Isolation of an antitumor component from polysaccharide fraction A5 of some Basidiomyces was achieved by column chromatography on Sephadex G-200. A detection method based on the specific rotatory characteristics of the polysaccharide was applied to estimate components in effluent fractions from the chromatography, and it was confirmed that a series of eluates having similar specific rotation was made up of homogeneous polysaccharide. Three components (H51, H52, and H53) were isolated, in chromatographically pure state, from fraction A5. Component H51 consisted of a skeleton of beta-(1 leads to 3)-linked glucose residues, probably having branches of galactose and mannose residues, and also containing acidic sugars. Component H53 had a main structure similarly consisting of beta-(1 leads to 3)-linked glucose residues and a larger proportion of acidic sugar than H51. Component H52 was a heteropolysaccharide made up of alpha-linked galactose and mannose residues. Components H51 and H53 had a higher and a lower molecular weight, respectively, than H52. The only antitumor-active component was H51.  相似文献   

19.
The heavily encapsulated Acinetobacter calcoaceticus BD4 and the “miniencapsulated” single-step mutant A. calcoaceticus BD413 produced extracellular polysaccharides in addition to the capsular material. The molar ratio of rhamnose to glucose (3:1) in the extracellular BD413 polysaccharide fraction was similar to the composition of the capsular material. In both strains, the increase in capsular polysaccharide was parallel to cell growth and remained constant in stationary phase. The extracellular polysaccharides were detected starting from mid-logarithmic phase and continued to accumulate in the growth medium for 5 to 8 h after the onset of stationary phase. Strain BD413 produced one-fourth the total rhamnose exopolysaccharide per cell that strain BD4 did. Depending on the growth medium, 32 to 63% of the rhamnose polysaccharide produced by strain BD413 was extracellular, whereas in strain BD4 only 7 to 14% was extracellular. In all cases, strain BD413 produced more extracellular rhamnose polysaccharide than strain BD4 did. In glucose medium, strain BD413 also produced approximately 10 times more extracellular emulsifying activity than strain BD4 did. The isolated capsular polysaccharide obtained after shearing of BD4 cells showed no emulsifying activity. Thus, strain BD413 either produces a modified extracellular polysaccharide or excretes an additional substance(s) that is responsible for the emulsifying activity. Emulsions induced by the ammonium sulfate-precipitated BD413 extracellular emulsifier require the presence of magnesium ion and a mixture of an aliphatic and an aromatic hydrocarbon.  相似文献   

20.
Biosynthesis and degradation of gamma-glutamyltranspeptidase of rat kidney   总被引:2,自引:0,他引:2  
gamma-Glutamyltranspeptidase (gamma GTP) of rat kidney is an intrinsic glycoprotein bound to the plasma membrane and composed of two nonidentical subunits and an amino-terminal portion of the heavy subunit anchors the enzyme to the membrane. The mechanisms of biosynthesis, post-translational processing and degradation of the enzyme were studied using mono-specific antibody raised to gamma-glutamyltranspeptidase purified from rat kidney. The following results were obtained. Double isotope labeling in vivo showed that gamma-glutamyltranspeptidase is synthesized as a precursor form with a single polypeptide chain of 78,000 daltons, and then processed post-translationally by limited proteolysis, resulting in two subunits of 50,000 and 23,000 daltons. Incorporation of [3H]leucine or [35S]methionine into the precursor form increased until 60 min after their intravenous injection, and a pulse-chase experiment showed that the half life of the precursor form was 53 min. [3H]Fucose and [3H]glucosamine could also be incorporated into the precursor form, showing that glycosylation of the enzyme occurs at the stage of the precursor form. Rat kidney labeled with [3H]fucose was subjected to subcellular fractionation. The Golgi fraction contained the glycosylated precursor form and a small amount of subunits, and the plasma membrane fraction contained mostly subunits with a significant amount of precursor, suggesting that post-translational processing of the precursor occurs on the plasma membrane. The apparent half lives of the native enzyme and the heavy and light subunits were all estimated as 4.3 +/- 0.5 days by labeling with [3H]leucine or [3H]fucose. gamma-Glutamyltranspeptidase has a different turnover rate from aminopeptidase M, which is located in the microvillus membrane close to gamma-glutamyltranspeptidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号