首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian and fungal prion proteins form self-perpetuating β-sheet-rich fibrillar aggregates called amyloid. Prion inheritance is based on propagation of the regularly oriented amyloid structures of the prion proteins. All yeast prion proteins identified thus far contain aggregation-prone glutamine/asparagine (Gln/Asn)-rich domains, although the mammalian prion protein and fungal prion protein HET-s do not contain such sequences. In order to fill this gap, we searched for novel yeast prion proteins lacking Gln/Asn-rich domains via a genome-wide screen based on cross-seeding between two heterologous proteins and identified Mod5, a yeast tRNA isopentenyltransferase, as a novel non-Gln/Asn-rich yeast prion protein. Mod5 formed self-propagating amyloid fibers in vitro and the introduction of Mod5 amyloids into non-prion yeast induced dominantly and cytoplasmically heritable prion state [MOD+], which harbors aggregates of endogenous Mod5. [MOD+] yeast showed an increased level of membrane lipid ergosterol and acquired resistance to antifungal agents. Importantly, enhanced de novo formation of [MOD+] was observed when non-prion yeast was grown under selective pressures from antifungal drugs. Our findings expand the family of yeast prions to non-Gln/Asn-rich proteins and reveal the acquisition of a fitness advantage for cell survival through active prion conversion.  相似文献   

2.
Yeast is an ideal organism to express viral antigens because yeast glycosylate proteins more similarly to mammals than bacteria. Expression of proteins in yeast is relatively fast and inexpensive. In addition to the convenience of production, for purposes of vaccination, yeast has been shown to have natural adjuvant activity making the expressed proteins more immunogenic when administered along with yeast cell wall components. Development of genetic systems to display foreign proteins on the surface of yeast via fusion to glycosylphosphatidylinositol‐anchored (GPI) proteins has further simplified the purification of recombinant proteins by not requiring harsh treatments for cellular lysis or protein purification. We have expressed the hemagglutinin protein from a highly pathogenic avian influenza (HPAI) virus [A/Egret/HK/757.2/02], subtype H5N1, on the surface of the yeast strain Pichia pastoris, as an anchored C‐terminal fusion with the Saccharomyces cerevisiae GPI‐anchored cell wall protein, α‐agglutinin. Surface expression of the hemagglutinin fusion protein was demonstrated by immunofluorescence microscopy. Functionally, the fusion protein retained hemagglutinin agglutinating activity, and oral vaccination with the yeast resulted in production of virus neutralizing antibodies. This study represents the first steps in the generation of a yeast‐based vaccine for protection against highly pathogenic strains of avian influenza. Published 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
Fluorescent protein fusions are a powerful tool to monitor the localization and trafficking of proteins. Such studies are particularly easy to carry out in the budding yeast Saccharomyces cerevisiae due to the ease with which tags can be introduced into the genome by homologous recombination. However, the available yeast tagging plasmids have not kept pace with the development of new and improved fluorescent proteins. Here, we have constructed yeast optimized versions of 19 different fluorescent proteins and tested them for use as fusion tags in yeast. These include two blue, seven green, and seven red fluorescent proteins, which we have assessed for brightness, photostability and perturbation of tagged proteins. We find that EGFP remains the best performing green fluorescent protein, that TagRFP-T and mRuby2 outperform mCherry as red fluorescent proteins, and that mTagBFP2 can be used as a blue fluorescent protein tag. Together, the new tagging vectors we have constructed provide improved blue and red fluorescent proteins for yeast tagging and three color imaging.  相似文献   

4.
Jungwirth H  Kuchler K 《FEBS letters》2006,580(4):1131-1138
Yeast ATP-binding cassette (ABC) proteins are implicated in many biological phenomena, often acting at crossroads of vital cellular processes. Their functions encompass peptide pheromone secretion, regulation of mitochondrial function, vacuolar detoxification, as well as pleiotropic drug resistance and stress adaptation. Because yeast harbors several homologues of mammalian ABC proteins with medical importance, understanding their molecular mechanisms, substrate interaction and three-dimensional structure of yeast ABC proteins might help identifying new approaches aimed at combating drug resistance or other ABC-mediated diseases. This review provides a comprehensive discussion on the functions of the ABC protein family in the yeast Saccharomyces cerevisiae.  相似文献   

5.

Background  

Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model.  相似文献   

6.
Characterization of HSP-70 cognate proteins from wheat   总被引:1,自引:0,他引:1  
Summary Animal and plant cells contain a family of constitutively expressed HSP-70 cognate proteins that are localized in different subcellular locations and are presumed to play a role in protein folding and transport. Utilizing antibodies raised against the yeast endoplasmicreticulum-localized HSP-70 cognate termed BiP/GRP-78, as well as antibodies raised against the Escherichia coli HSP-70 protein DnaK, we have identified and characterized a large family of closely related proteins in wheat. One protein band of 78 kDa that is apparently closely related to yeast BiP was localized in the endoplasmic reticulum. This band cross-reacted with the yeast BiP but not with the DnaK-specific antibodies. The yeast BiP antibodies also recognized a cytoplasmic protein of 70 kDa that is probably related to the HSC-70 cognate proteins. These two proteins were further confirmed as HSP-70 cognates by their ability to bind to an ATP-agarose column. Probing of proteins from purified wheat mitochondrial preparations with the yeast BiP and DnaK-specific antibodies showed that this organelle contained a family of HSP-70-related proteins. The yeast BiP antibodies recognized two mitochondrial proteins of 60 and 58 kDa, but failed to detect any protein in the size rang of 70 to 80 kDa. However, the presence of immunologically distinct proteins of 90 and 78 kDa, as well as of lower molecular weight from this family in the mitochondria, was shown by probing with the DnaK-specific antibodies. A new protein of 30 kDa, cross-reacting with anti-yeast BiP antibodies, was detected only in developing seeds, close to their maturity. The evolution of HSP-70 cognate proteins in wheat as shown in this study is discussed.  相似文献   

7.
A proteomics approach was employed to identify proteins secreted into the hemolymph of Ornithodorus savignyi ticks 2 h after immune-challenge with the yeast, Candida albicans. Profiling of the proteins present in hemolymph of unchallenged ticks versus ticks challenged with heat-killed yeast revealed five proteins to be differentially expressed. The modulated protein spots were subjected to tandem mass spectrometry (MS/MS) analysis, but could not be positively identified. These proteins can be assigned to the immune response as they were not induced after aseptic injury. In an attempt to identify hemolymph proteins that recognize and bind to yeast cells, hemolymph obtained from both unchallenged and challenged ticks was incubated with C. albicans. Elution of the bound proteins followed by SDS–PAGE analysis indicated that three proteins (97, 88 and 26 kDa) present in both unchallenged and challenged hemolymph samples bind to yeast cells. The constant presence of these three proteins in tick hemolymph leads us to believe that they may be involved in non-self recognition and participate in yeast clearance from tick plasma. The analyzed yeast-binding proteins could also not be positively identified, suggesting that all the tick immune proteins investigated in this study are novel.  相似文献   

8.
Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.  相似文献   

9.
Ten class E Vps proteins in yeast are known components of the ESCRT complexes I, II and III, which are required for the sorting of proteins to the lumenal membranes of multivesicular bodies. We used the yeast 2 hybrid system to analyze the protein–protein interactions of all 17 soluble class E Vps proteins, as well as proteins thought to be required for the ubiquitination and deubiquitination of cargo proteins at multivesicular bodies. We identified novel interactions between yeast ESCRT complex components suggesting that ESCRTI binds to both ESCRTII and ESCRTIII. These interactions were confirmed by GST pull-down experiments. Our data indicate that the link between ESCRTI and ESCRTIII is via Vps28p and Vps37p/Srn2p binding directly to Vps20p, as well as through indirect interactions via ESCRTII. This is in contrast to the situation in mammalian cells where ESCRTI and ESCRTIII interact indirectly via ALIX, the mammalian homologue of yeast proteins Vps31p/Bro1p and Rim20p. Our data also enable us to link all soluble class E Vps proteins to the ESCRT complexes. We propose the formation of a large multimeric complex on the endosome membrane consisting of ESCRTI, ESCRTII, ESCRTIII and other associated proteins.  相似文献   

10.
【目的】基于人类基因文库,构建一个筛选抑制酿酒酵母生长的人类基因的方法,并运用此方法筛选含有生长抑制性人源蛋白质的酿酒酵母,用于分析人类基因的生理功能及其抑制剂的寻找。【方法】利用Gateway~(TM)重组技术将人类蛋白质编码基因构建到酿酒酵母表达质粒中。得到的质粒分别转化酿酒酵母细胞中,分析哪些基因的表达会抑制酿酒酵母的生长,并用绿色荧光蛋白标签对典型候选基因在酿酒酵母中的定位进行观察。【结果与结论】本研究建立了抑制酿酒酵母生长的人类基因的筛选方法,并运用此方法成功地从2991个人类蛋白质编码基因中筛选到29个显著抑制酿酒酵母生长的基因。其中一些是引起人类疾病的致病基因。例如,PDLIM4参与到骨质疏松症和前列腺癌的形成和发展,但其生理功能尚不清楚。我们的研究可能为揭示这些候选基因的功能和调节机制提供新的途径。  相似文献   

11.
12.
Vector engineering and gene disruption in host cells were attempted for the enhancement of α-agglutinin-based display of proteins on the cell surface in yeast. To evaluate the display efficiency by flow cytometric analysis, DsRed-monomer fused with FLAG-tag was displayed and immunostained as a model protein. The use of leu2-d in the expression vector resulted in the enhanced efficiency and ratio of the accessible display of proteins. Moreover, the amount of displayed proteins in SED1-disrupted cells increased particularly during the stationary growth phase. The combination of these improvements resulted in the quantitatively enhanced accessible display of DsRed-monomer on the yeast cell surface. The improved yeast display system would be useful in a wider range of its applications in biotechnology.  相似文献   

13.
14.
The ras genes, which were first identified by their presence in RNA tumor viruses and which belong to a highly conserved gene family in vertebrates, have two close homologs in yeast, detectable by Southern blotting. We have cloned both genes (RAS1 and RAS2) from plasmid libraries and determined the complete nucleotide sequence of their coding regions. They encode proteins with nearly 90% homology to the first 80 positions of the mammalian ras proteins, and nearly 50% homology to the next 80 amino acids. Yeast RAS1 and RAS2 proteins are more homologous to each other, with about 90% homology for the first 180 positions. After this, at nearly the same position that the mammalian ras proteins begin to diverge from each other, the two yeast ras proteins diverge radically. The yeast ras proteins, like the proteins encoded by the mammalian genes, terminate with the sequence cysAAX, where A is an aliphatic amino acid. Thus the yeast ras proteins have the same overall structure and interrelationship as the family of mammalian ras proteins. The domains of divergence may correspond to functional domains of the ras proteins. Monoclonal antibody directed against mammalian ras proteins immunoprecipitates protein in yeast cells containing high copy numbers of the yeast RAS2 gene.  相似文献   

15.
Telomerase is a ribonucleoprotein (RNP) particle required for the replication of telomeres. The RNA component, termed hTR, of human telomerase contains a domain structurally and functionally related to box H/ACA small nucleolar RNAs (snoRNAs). Furthermore, hTR is known to be associated with two core components of H/ACA snoRNPs, hGar1p and Dyskerin (the human counterpart of yeast Cbf5p). To assess the functional importance of the association of hTR with H/ACA snoRNP core proteins, we have attempted to express hTR in a genetically tractable system, Saccharomyces cerevisiae. Both mature non-polyadenylated and polyadenylated forms of hTR accumulate in yeast. The former is associated with all yeast H/ACA snoRNP core proteins, unlike TLC1 RNA, the endogenous RNA component of yeast telomerase. We show that the presence of the H/ACA snoRNP proteins Cbf5p, Nhp2p and Nop10p, but not Gar1p, is required for the accumulation of mature non-polyadenylated hTR in yeast, while accumulation of TLC1 RNA is not affected by the absence of any of these proteins. Our results demonstrate that yeast telomerase is unrelated to H/ACA snoRNPs. In addition, they show that the accumulation in yeast of the mature RNA component of human telomerase depends on its association with three of the four core H/ACA snoRNP proteins. It is likely that this is the case in human cells as well.  相似文献   

16.
17.
Candida albicans is a human commensal and opportunistic pathogen that participates in biofilm formation on host surfaces and on medical devices. We used DIGE analysis to assess the cytoplasmic and non‐covalently attached cell‐surface proteins in biofilm formed on polymethylmethacrylate and planktonic yeast cells and hyphae. Of the 1490 proteins spots from cytoplasmic and 580 protein spots from the surface extracts analyzed, 265 and 108 were differentially abundant respectively (> 1.5‐fold, p <0.05). Differences of both greater and lesser abundance were found between biofilms and both planktonic conditions as well as between yeast cells and hyphae. The identity of 114 cytoplasmic and 80 surface protein spots determined represented 73 and 25 unique proteins, respectively. Analyses showed that yeast cells differed most in cytoplasmic profiling while biofilms differed most in surface profiling. Several processes and functions were significantly affected by the differentially abundant cytoplasmic proteins. Particularly noted were many of the enzymes of respiratory and fermentative pentose and glucose metabolism, folate interconversions and proteins associated with oxidative and stress response functions, host response, and multi‐organism interaction. The differential abundance of cytoplasmic and surface proteins demonstrated that sessile and planktonic organisms have a unique profile.  相似文献   

18.
Summary Ribosomal proteins of E. coli and yeast were separated by gel filtration on dextran (Sephadex) and polyacrylamide (Bio-Gel) columns. Both gels revealed a valuable separation of the proteins. Finally only Bio-Gel columns were used, since their polyacrylamide matrix is more resistant to the applied organic acids.The wide distribution of the molecular weights for both the E. coli and yeast ribosomal proteins was confirmed. E. coli ribosomal proteins were separated into three main groups by a single chromatography on Bio-Gel P-10. The same was true for yeast ribosomal proteins. Rechromatography of these protein groups resulted in a further valuable resolution. The fractionated proteins are recovered without any loss and they are very useful for further purification by other procedures, especially on a large scale basis.  相似文献   

19.
Protein elongation can occur in many ways, such as domain duplication or insertion and as recruitment of a transposable element fragment into the coding region, and it is believed to be a general tendency in protein evolution. Indeed, a previous study showed that yeast proteins are, on average, longer than their orthologs in bacteria, and in this study, we found that proteins in yeast, nematode, Drosophila, human, and Arabidopsis are, on average, longer than their orthologs in Escherichia coli. Surprisingly, however, we found conservation of protein sequence length across eukaryotic kingdoms. We collected 1,252 orthologous proteins from yeast, nematode, Drosophila, human, and Arabidopsis and found that the total length of these proteins is very similar among the five species and that there is no general tendency for a protein to increase or decrease in length. Furthermore, although paralogous proteins tend to undergo more sequence-length changes, there is also no general tendency for length increase. However, proteins that are commonly shared by Drosophila and human but not by yeast are, on average, substantially longer than proteins that are shared by yeast, Drosophila, and human. This is a puzzle that begs for an answer.  相似文献   

20.
Palmitoylation plays important roles in the regulation of protein localization, stability, and activity. The protein acyltransferases (PATs) have a common DHHC Cys-rich domain. Twenty-three DHHC proteins have been identified in humans. However, it is unclear whether all of these DHHC proteins function as PATs. In addition, their substrate specificities remain largely unknown. Here we develop a useful method to examine substrate specificities of PATs using a yeast expression system with six distinct model substrates. We identify 17 human DHHC proteins as PATs. Moreover, we classify 11 human and 5 yeast DHHC proteins into three classes (I, II, and III), based on the cellular localization of their respective substrates (class I, soluble proteins; class II, integral membrane proteins; class III, lipidated proteins). Our results may provide an important clue for understanding the function of individual DHHC proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号