首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Bone alkaline (AlP) and acid phosphatase (AcP) activities were simultaneusly demonstrated in tissue sections obtained from mice, rats, and humans. The method involved tissue fixation in ethanol, embedding in glycol methacrylate (GMA), and demonstration of AlP and AcP activities employing a simultaneous coupling azo dye technique using substituted naphthol phosphate as a substrate. AlP activity was demonstrated first followed by AcP activity. Both enzyme activities were demonstrated in tissue sections from bones fixed and/or stored in acetone or 70% ethanol for up to 14 days or stored in GMA for 2 months. AlP activity in tissue sections from bones fixed in 10% formalin, 2% glutaraldehyde, or formal-calcium, however, was markedly inhibited after 3–7 days and was no longer detectable after 14 days of fixation. Moreover, AlP activity was diminished in tissue sections from bones fixed in 70% ethanol or 10% formalin and subsequently demineralized in 10% EDTA (pH7) for 2 days, and the activity was completely abolished in tissue sections from bones subsequently demineralized in 5% formic acid: 20% sodium citrate (1:1, pH 4.2) for 2 days. Methyl methacrylate (MMA) embedding at concentrations above 66% completely inhibited AlP activity. AcP activity, however, was only partially inhibited by formalin, glutaraldehyde, or formal-calcium after 7 or 14 days of fixation or by MMA embedding and was unaffected by the demineralizing agent formic acid-citrate for 2 days. While AcP activity was preserved in bones fixed in formalin and subsequently demineralized in EDTA, the activity was completely abolished when EDTA demineralization was carried out on bones previously fixed in 70% ethanol. These results indicate that bone AlP and AcP activities can be demonstrated simultaneously in the same section using a simple tissue preparation technique and that the activities are retained in tissues fixed and/or stored in acetone, 70% ethanol or GMA, but are differentially inactivated by other fixatives studied, and by EDTA, formic acid-citrate, and MMA embedding.Abbreviations AcP acid phosphatase - AlP alkaline phosphatase - GMA glycol methacrylate - MMA methyl methacrylate - EDTA ethylenediaminetetraacetic acid  相似文献   

2.
Summary The ethanol yield was not affected and the ethanol productivity was increased when exponentially decreasing feeding rates were used instead of constant feeding rates in fed batch ethanol fermentations. The influences of the initial sugar feeding rate on the ethanol productivity, on the constant ethanol production rate during the feeding phase and on the initial ethanol production specific rate are represented by Monod-like equations.Nomenclature F reactor feeding rate (L.h–1) - Fo initial reactor feeding rate (L.h–1) - K time constant; see equation (l) (h–1) - ME mass of ethanol in the fermentor (g) - Ms mass of TRS in the fermentor (g) - Mx mass of yeast cells (dry matter) in the fermentor (g) - P ethanol productivity (g.L–1.h–1) - R ethanol constant production rate during the feeding phase (g.h–1) - s standard deviation - So TRS concentration in the feeding mash (g.L–1) - t time (h) - T fermentor filling-up-time (h) - T time necessary to complete the fermentation (h) - TRS total reducing sugars calculated as glucose (g.L–1) - Vo volume of the inoculum (L) - Vf final volume of medium in the fermentor (L) - Xo yeast concentration of the inoculum (dry matter) (g.L–1) - ethanol yield (% of the theoretical value) - initial specific rate of ethanol production (h–1)  相似文献   

3.
Summary The ethanol yield was not affected and the ethanol productivity increased (10%) when linearly decreasing feeding rates were used instead of constant feeding rates in fed-batch ethanol fermentations.Nomenclature F reactor feeding rate (L.h–1) - ME mass of ethanol in the fermentor (g) - Ms mass of TRS in the fermentor (g) - Mx mass of yeast cells (dry matter) in the fermentor (g) - P ethanol productivity (g.L–1.h–1) - s standard deviation - So TRS concentration in the feeding mash (g.L–1) - t time (h) - T fermentor filling-up time (h) - TRS total reducing sugars calculated as glucose (g.L–1) - Xo yeast cells concentration (dry matter) in the inoculum (g.L–1) - average ethanol yield (% of the theoretical value)  相似文献   

4.
Summary A gel-sandwich technique for the histochemical demonstration of dehydrogenases is introduced with LDH set up as an example. Especially suitable, of the gels examined, for this technique is 1.5% W/V agar-agar low gel strength. In it several reaction ingredients for the histochemical reaction are dissolved. Considering LDH the following gel composition showed good results: 1.5% W/V agar-agar low gel strength, 5 mM TNBT in 150 l DMF, 120 mM L-lactate, 3–5 mM NAD+, 10 mM amytal, 22,4–32×10–5 M Meldola Blue, 160 mM soldium phosphate buffer pH 7.6 (total solution of 1 ml). After the solidification of the gel, gel-bars were frozen with CO2-snow. The 40–80 m thick gel slices were gained in the cryostat. Of the three different arrangement possibilities of the gel slices and the tissue-sections a sandwich arrangement (cover-gel slice — tissue section — ground-gel slice) produced the best results. The enzyme reaction is started by thawing of the gel slices (together with the tissue sections) and by putting them between the hotplate and the evaporator-head-piece, especially developed for this technique. The gel slices also remain in combination with the tissue sections after the reaction.The influence of the gel in combination with the electron carrier Meldola Blue on the spontaneous reduction rates of ditetrazolium salts in day light, were examined as well as the diffusion rates of TNBT and NADH out of gel slices and the influence of DMF and DMSO on the LDH activity.This technique prevents both, the loss of enzymes and the loss of reduction equivalents. There are given presuppositions for qualitative and quantitative histochemical investigations as well. The advantages of the new gel technique are discussed.  相似文献   

5.
Ethanol production in a continuous fermentation/membrane pervaporation system   总被引:12,自引:0,他引:12  
The productivity of ethanol fermentation processes, predominantly based on batch operation in the U.S. fuel ethanol industry, could be improved by adoption of continuous processing technology. In this study, a conventional yeast fermentation was coupled to a flat-plate membrane pervaporation unit to recover continuously an enriched ethanol stream from the fermentation broth. The process employed a concentrated dextrose feed stream controlled by the flow rate of permeate from the pervaporation unit via liquid-level control in the fermentor. The pervaporation module contained 0.1 m2 commercially available polydimethylsiloxane membrane and consistently produced a permeate of 20%–23% (w/w) ethanol while maintaining a level of 4%–6% ethanol in a stirred-tank fermentor. The system exhibited excellent operational stability. During continuous operation with cell densities of 15–23 g/l, ethanol productivities of 4.9–7.8 gl–1 h–1 were achieved utilizing feed streams of 269–619 g/l glucose. Pervaporation flux and ethanol selectivities were 0.31–0.79 lm–2 h–1 and 1.8–6.5 respectively.  相似文献   

6.
Conclusions Except for the pronounced adaptation-hysteresis effect, the pulse experiments exhibited the expected trend: deviation from the steady feed reference curve was greatest at lowest dilution rates. Under conditions of lowest glucose level the effect of pulsing would be expected to cause the largest fluctuations in glucose, causing a certain fraction of the cells to ferment. Generally over the entire dilution rate range the biomass production was decreased and the ethanol was increased by pulsing the feed stream. There is, however, some evidence that pulse feeding can trigger quite unexpected results. Point (6) at D=0.3 h–1 in Fig. 1 exhibit a biomass productivity which was about 20% greater than the continuous feeding reference value (DX=3.6 kg m–3 h–1 as compared with 3.0 kg m–3 h–1). Such performance would be of significant commercial value, but the poor reproducibility due to adaptation, as seen here, certainly would preclude its application.The results obtained should also be applicable to fed batch operation at the corresponding glucose level. Further experiments including the variation of the glucose feeding period would be necessary to obtain a conclusive picture. The observed phenomena are likely to occur in other fermentations and could eventually explain some of the problems existing with scale up of fermentation processes.Symbols D dilution rate h–1 - P product (ethanol) concentration kg m–3 - QO2 specific oxygen uptake rate mol kg–1 s–1 - QCO2 specific CO2 production rate mol kg–1 s–1 - S substrate (glucose) concentration kg m–3 - X biomass concentration kg m–3 - YP/S yield of ethanol from glucose kg kg–1 - YX/S yield of biomass from glucose kg kg–1  相似文献   

7.
An optimized soy-based medium was developed for ethanol production byEscherichia coli KO11. The medium consists of mineral salts, vitamins, crude enzymatic hydrolysate of soy and fermentable sugar. Ethanol produced after 24 h was used as an endpoint in bioassays to optimize hydrolysate preparation. Although longer fermentation times were required with soy medium than with LB medium, similar final ethanol concentrations were achieved (44–45 g ethanol L–1 from 100 g glucose L–1). The cost of materials for soy medium (excluding sugar) was estimated to be $0.003 L–1 broth, $0.006 L–1 ethanol.  相似文献   

8.
Summary The final products of unspecific esterase and succinic dehydrogenase were demonstrated in 1–2 m sections of tick salivary glands embedded in glycol methacrylate (GMA). In the esterase experiments, the tissue specimens were incubated after fixation in glutaraldehyde or acroleïn, and then embedded in GMA. For demonstration of succinic dehydrogenase activity, the specimens were incubated prior to glutaraldehyde fixation followed by embedding in GMA. In sections of all preparations intense enzymatic reaction was observed. High resolution light microscopy could efficiently be used for precise locating of the enzymic products, due to excellent morphologic reference in semithin GMA sections.Supported by the Deutsche Forschungsgemeinschaft. Presented in part at the 4th International Congress on Protozoology, Clermont-Ferrand (France), 2.–9. September 1973.The author was fellow of the Deutsche Forschungsgemeinschaft at the Department of Anatomy, Medical School Hannover, Federal Republic of Germany, during part of this study.  相似文献   

9.
Summary Optimal growth conditions for Zymomonas mobilis have been established using continuous cultivation methods. Optimal substrate utilization efficiency occurs with 2.5 g l–1 yeast extract, 2.0 g l–1 ammonium sulfate and 6.0 g l–1 magnesium sulfate in the media. Catabolic activity is at its maximum with glucose uptake rates of 16–18 g l–1 h–1 and ethanol production rates of 8–9 g l–1 h–1, Qg values of 22–26 and Qp values between 11 and 13, which results in 40 g l–1 h–1 ethanol yields using a 100 g l–1 substrate feed. Any increase in these parameters goes on cost of substrate utilization efficiency. Calcium pantothenate can not substitute yeast extract.Abbreviations G Glucose (%) - Pant Calcium pantothenate (mg l–1) - D Dilution rate (h–1) - NH4 Ammonium sulfate (%) - Mg Magnesium sulfate (%) - S1 Residual glucose in the fermenter (g l–1) - S0 Glucose feed (g l–1) - Eth Ethanol concentration (g l–1) - GUR Glucose uptake rate (g l–1 h–1) - Qg Specific glucose uptake rate (g g–1 h–1) - Qp Specific ethanol production rate (g g–1 h–1) - EPR Ethanol production rate (g l–1 h–1) - Yg Yield coefficient for glucose (g g–1) - Yp Conversion efficiency (%) - C Biomass concentration (g l–1) Present address: (Until June 1982) Institut für Mikrobiologie, TH Darmstadt, 6100 Darmstdt, Federal Republic of Germany  相似文献   

10.
An accurate and precise procedure was developed for the detection and quantification of (2-methoxyethoxy)acetic acid (MEAA), a metabolite and biomarker for human exposure to 2-(2-methoxyethoxy)ethanol. The compound 2-(2-methoxyethoxy)ethanol has a wide array of industrial applications including its use as an additive in military jet fuel. Exposure to 2-(2-methoxyethoxy)ethanol is a health concern owing to its toxicity which includes developmental and teratogenic properties. Sample preparation consisted of liquid-liquid extraction (LLE) and esterification of MEAA to produce the ethyl ester. Measurement was by a gas chromatograph (GC) equipped with a mass selective detector (MSD) using a HP-1 capillary column. Recovery studies of spiked blank urine demonstrated good accuracy and precision; recovery varied between 95 and 103% with relative standard deviations of 8.6% and less. The limit of detection (LOD) for this procedure was found to range from 0.02 to 0.08 microg/ml equivalent levels of MEAA in urine. These data and other aspects of the validation of this procedure will be discussed.  相似文献   

11.
The mathematical model of an aerobic culture of recombinant yeast presented in work by Zhang et al. (1997) is given by a differential-algebraic system. The classical nonlinear observer algorithms are generally based on ordinary differential equations. In this paper, first we extend the nonlinear observer synthesis to differential-algebraic dynamical systems. Next, we apply this observer theory to the mathematical model proposed in Zhang et al. (1997). More precisely, based on the total cell concentration and the recombinant protein concentration, the observer gives the online estimation of the glucose, the ethanol, the plasmid-bearing cell concentration and a parameter that represents the probability of plasmid loss of plasmid-bearing cells. Numerical simulations are given to show the good performances of the designed observer.Symbols C 1 activity of pacing enzyme pool for glucose fermentation (dimensionless) - C 2 activity of pacing enzyme pool for glucose oxidation (dimensionless) - C 3 activity of pacing enzyme pool for ethanol oxidation (dimensionless) - E ethanol concentration (g/l) - G glucose concentration (g/l) - k a regulation constant for (g glucose/g cell h–1) - k b regulation constant for (dimensionless) - k c regulation constant for (g glucose/g cell h–1) - k d regulation constant for (dimensionless) - K m1 saturation constant for glucose fermentation (g/l) - K m2 saturation constant for glucose oxidation (g/l) - K m3 saturation constant for ethanol oxidation (g/l) - L ( t) time lag function (dimensionless) - p probability of plasmid loss of plasmid-bearing cells (dimensionless) - P recombinant protein concentration (mg/g cell) - q G total glucose flux culture time (g glucose/g cell h) - t culture time (h) - t lag lag time (h) - X total cell concentration (g/l) - X + plasmid-bearing cell concentration (g/l) - Y F X / G cell yield for glucose fermentation pathway (g cell/g glucose) - Y O X / G cell yield for glucose oxidation pathway (g cell/g glucose) - Y X / E cell yield for ethanol oxidation pathway (g cell/g ethanol) - Y E / X ethanol yield for fermentation pathway based on cell mass (g ethanol·g cell) - 2 glucoamylase yield for glucose oxidation (units/g cell) - 3 glucoamylase yield for ethanol oxidation (units/g cell) - µ1 specific growth rate for glucose fermentation (h–1) - µ2 specific growth rate for glucose oxidation (h–1) - µ3 specific growth rate for ethanol oxidation (h–1) - µ1max maximum specific growth rate for glucose fermentation (h–1) - µ2max maximum specific growth rate for glucose oxidation (h–1) - µ3max maximum specific growth rate for ethanol oxidation (h–1)  相似文献   

12.
Hygrophilic soil animals, like enchytraeids, overwintering in frozen soil are unlikely to base their cold tolerance on supercooling of body fluids. It seems more likely that they will either freeze due to inoculative freezing, or dehydrate and adjust their body fluid melting point to ambient temperature as has been shown for earthworm cocoons and Collembola. In the present study we tested this hypothesis by exposing field-collected adult Fridericia ratzeli from Disko, West Greenland, to freezing temperatures under various moisture regimes. When cooled at –1 °C min–1 under dry conditions F. ratzeli had a mean temperature of crystallisation (Tc) of –5.8 °C. However, when exposed to temperatures above standard Tc for 22 h, at –4 °C, most individuals (90%, n= 30) remained unfrozen. Slow cooling from –1 °C to –6 °C in vials where the air was in equilibrium with the vapour pressure of ice resulted in freezing in about 65% of the individuals. These individuals maintained a normal body water content of 2.7–3.0 mg mg–1 dry weight and had body fluid melting points of about –0.5 °C with little or no change due to freezing. About 35% of the individuals dehydrated drastically to below 1.1 mg mg–1 dry weight at –6 °C, and consequently had lowered their body fluid melting point to ca. –6 °C at this time. Survival was high in both frozen and dehydrated animals at –6 °C, about 60%. Approximately 25% of the animals (both frozen and dehydrated individuals) had elevated glucose concentrations, but the mean glucose concentration was not increased to any great extent in any group due to cold exposure. The desiccating potential of ice was simulated using aqueous NaCl solutions at 0 °C. Water loss and survival in this experiment were in good agreement with results from freezing experiments. The influence of soil moisture on survival and tendency to dehydrate was also evaluated. However, soil moisture ranging between 0.74 g g–1 and 1.15 g g–1 dry soil did not result in any significant differences in survival or frequency of dehydrated animals even though the apparent wetness and structure of the soil was clearly different in these moisture contents.Abbreviations DW dry weight - FW fresh weight - MP melting point - RH relative humidity - Tc crystallisation temperatures - WC water contentCommunicated by I.D. Hume  相似文献   

13.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

14.
A. Rieger  R. Hampp 《Planta》1991,184(3):415-421
The activities of enzymes which catalyze one step in each of the five major carbon pathways in green plants were measured in secondary pulvini and other tissues of Phaseolus coccineus L. leaves. We were able to detect activities of fumarase (EC 4.2.1.2; tricarboxylic-acid pathway), NAD-glyceraldehyde-phosphate dehydrogenase (NAD-GAPDH, EC 1.2.1.12; glycolysis), 6-phosphogluconate dehydrogenase (6-PGDH, EC 1.1.1.44; oxidative pentose-phosphate pathway), ribulose-1, 5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39; photosynthetic carbon-reduction pathway), and of hydroxypyruvate reductase (HP-R, EC 1.1.1.81; photosynthetic carbon-oxidation pathway). On a protein basis the activities of Rubisco and HP-R in pulvinar regions were very low (below 1 and 2 mol · (kg protein) –-1 · h–-1, respectively), but the activities of fumarase and NAD-GAPDH were between 10- and 5-fold higher compared with the laminar tissue (up to 7 and 50 mol · (kg protein)–-1 · h–-1, respectively). Similarly, the protein specific activities of 6-PGDH were increased in the pulvinus (3–4 compared with approx. 1 mol · (kg protein)–-1 · h–-1 in the leaf blade). No differences in specific activities were detected between day and night positions of the leaves. By applying quantitative histochemical techniques we determined the longitudinal and transversal compartmentation of the activities of fumarase, NAD-GAPDH, and 6-PGDH in pulvinar tissues. Levels of activity of all three enzymes increased towards the middle part of the pulvinus. Here, expressed on a dry-weight (DW) basis, the analysis of cross sections showed highest activities in the outer parts of the extensor in the order given, approx. 0.6, 5, and 0.25 mol · (kg DW)–-1 · h–-1 for fumarase, NAD-GAPDH and 6-PGDH. When related to protein, levels of activity were comparably high within the inner parts of extensor and flexor, and partly also in the abaxial part of the bundle (fumarase, 6-PGDH). The tissue-specific compartmentation of the respective activities is discussed in relation to leaf movement and shows parallels with guard-cell function.Abbreviations Chl chlorophyll - DW dry weight - GAPDH glyceraldehyde-phosphate dehydrogenase - HP-R hydroxypyruvate reductase - Rubisco ribulose-1,5-bisphosphate carboxylase - 6-PGDH 6-phosphogluconate dehydrogenase This investigation was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

15.
Summary A wild coculture of obligately thermophilic bacteria, including only a single cellulolytic species Clostridium, ferments 2% crystalline cellulose and produces 4.6–5.1 g·l–1 of ethanol at 55°–60° C; that is, 0.96–1.1 moles of ethanol from 1 mole of glucose equivalent of cellulose degraded. However, the ethanol yield decreases with increasing cellulose concentration. Ethanolacetic acid ratio varies around 1 and cannot be influenced by substrate concentration. However, this ratio can be influenced by changing pH and temperature. For the ethanol production from cellulose, neutral and weekly alkaline media with a pH of 7.0–8.0 and a temperature of 55° C are optimal. Experiments in which the coculture was subjected to high ethanol concentrations showed that higher concentrations of added ethanol (up to 20 g·l–1) suppress cellulose degradation by 50% and inhibit the actual production of ethanol.  相似文献   

16.
Summary A new control policy for the on-line optimization of the nutrient supply in bakers yeast process is proposed. A feed rate corresponding to minimal substrate uptake time was shown to be optimal for cell yield and specific growth rate. Cultivation results of baker's yeast are presented.Nomenclature c glucose concentration in wort (mol.l–1) - C total glucose used (mol) - ce ethanol concentration in wort (mg.l–1) - cp glucose concentration in fresh medium (mol.l–1) - dt/dc glucose consumption time (sec.mol–1) - F substrate feed rate (litre.hr–1) - qc glucose uptake rate (mol.hr–1) - Qc specific glucose uptake rate (moll.g–1.hr–1) - qO2 oxygen uptake rate (mol.hr–1) - QO2 specific oxygen uptake rate (mol.g–1.hr–1) - rx productivity (g.l–1.hr–1) - t time (hr) - x biomass concentration (g.l–1) - X total biomass (g) - Yx/c cell yield (g.g–1): (g.mol–1) - Yo/c consumed oxygen to glucose ratio (mol.mol–1)  相似文献   

17.
Summary A new method for localization of inorganic diffusible ions in tissue is introduced. It has been applied to localization of Tl+ and Rb+ in barley roots and is probably also suited for Cs+, Ca2+, Cl, Br, PO 4 3– and perhaps K+. Its principle consists of dissolution of the ice from frozen tissue in a concentrated aqueous solution of a precipitating agent that is kept at a temperature just above its melting point.  相似文献   

18.
Summary Ethanol, isopropanol, propanol and butanol exponentially inhibited the maximum velocity of the glucose transport system ofSaccharomyces cerevisiae, determined by use of the non-metabolizable analogued-xylose. While the exponential inhibition constants increased with the lipid solubility of the alkanols, they were independent of temperature in the range 21°–35°C: the Arrhenius plots (modified according to the theory of absolute reaction rates) of the initial maximum rates of xylose transport were linear and parallel in both the absence and presence of alkanols. Thus, the alkanols did not affect the enthalpy of activation of the glucose transport system (H ± was 12 190 cal mol-1) but decreased the entropy of activation. The following entropy coefficients (decrease in activation entropy per unit concentration of alkanol) were obtained: ethanol,-0.84; isopropanol,-1.21; propanol,-1.41 and butanol,-3.18 entropy units per mole per liter. The temperature relations of glucose fermentation with and without ethanol by resting cells over the temperature range studied (15°–35°C) were nearly identical with those of the glucose transport system, suggesting that the latter mediates the rate-limiting step of the former and that this relationship is maintained in the presence of ethanol.  相似文献   

19.
Summary A series of continuous fermentations were carried out with a production strain of the yeast Saccharomyces cerevisiae in a membrane bioreactor. A membrane separation module composed of ultrafiltration tubular membranes retained all biomass in a fermentation zone of the bioreactor and allowed continuous removal of fermentation products into a cell-free permeate. In a system with total (100%) cell recycle the impact of fermentation conditions [dilution rate (0.03–0.3 h–1); substrate concentration in the feed (50–300 g·1–1); biomass concentration (depending on the experimental conditions)] was studied on the behaviour of the immobilized cell population and on ethanol formation. Maximum ethanol productivity (15 g·1–1·h–1) was attained at an ethanol concentration of 81 g·1–1. The highest demands of cells for maintenance energy were found at the maximum feed substrate concentration (300 g·1–1) and at very low concentrations of cells in the broth.  相似文献   

20.
An automated Flow Injection Analysis system using stop-flow technique for quantifying ethanol based in a colorimetric detection method was developed. The system permitted analysis in a linear range of 0.05–1 g ethanol l–1 without external dilution, a sampling frequency of 15 analyses per hour, and a relative standard deviation of 3.5%. A dilution line was implemented in the FIA system permitting the extension of the linear range to 0.5–5.2 g ethanol l–1 maintaining the same sampling frequency and standard deviation. The system was applied to measure ethanol concentrations present in samples of an alcoholic fermentation and the results showed no significant difference with other analytical procedures (GC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号