首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth and eventual size of larval helminths in their intermediate hosts presumably has a variety of fitness consequences. Therefore, elucidating the proximate factors affecting parasite development within intermediate hosts should provide insight into the evolution of parasite life histories. An experimental infection that resulted in heavy intensities of an acanthocephalan (Acanthocephalus lucii) in its isopod intermediate host (Asellus aquaticus) permitted the examination of parasite developmental responses to variable levels of resource availability and intraspecific competition. Isopods were infected by exposure to egg-containing fish feces, and larval infrapopulations were monitored throughout the course of A. lucii development. The relative rate of parasite growth slowed over time, and indications of resource constraints on developing parasites, e.g., crowding effects, were only observed in late infections. Consequently, the factors likely representative of resource availability to larval parasites (host size and molting rate) primarily affected parasite size in late infections. Moreover, at this stage of infection, competitive interactions, gauged by variation in worm size, seemed to be alleviated by greater resources, i.e., larger hosts that molted more frequently. The relatively rapid, unconstrained growth of young parasites may be worse for host viability than the slower, resource-limited growth of larger parasites.  相似文献   

2.
We examined the effect of isopod size and age on the success of an acanthocephalan infection and on the effects of that infection on the growth and survival of the isopods. Groups of isopods (Asellus aquaticus) belonging to 4 size classes (juveniles, maturing adults, young adults, and older adults) were exposed to infective acanthors of Acanthocephalus lucii. At the end of the experiment, survival of the isopods, lengths of male and female isopods, and numbers of different developmental stages of A. lucii larvae in infected isopods were assessed. Acanthocephalus lucii prevalence was significantly lower in juvenile isopods than in adults. Intensity of infection increased with the size of isopods at exposure, and cystacanth intensity correlated positively with isopod size at the end of the experiment. Exposed juveniles and maturing adults survived significantly better than unexposed individuals, but the opposite was true of the 2 largest size classes. At the end of experiment, exposed isopods, and, especially, cystacanth-infected isopods, were significantly larger than unexposed isopods in every size class. We suggest that isopod size not only affects the success of A. lucii infection but also affects the ability of A. lucii to affect the survival (and perhaps the growth) of the isopod hosts.  相似文献   

3.
Hemocoels of 8,731 Asellus aquaticus collected from the Forth and Clyde canal in Glasgow, Scotland, from January 1980 to March 1981 were examined for larvae of Acanthocephalus lucii. Prevalence and mean intensity were generally low (1.5-8.3% and 1.0-1.6, respectively), but there was a slight seasonal infection pattern with fewer infected isopods during summer, reflecting the appearance of a new isopod generation. Although there were no distinct seasonal trends in the proportions of each larval stage, recruitment of larvae probably occurred mainly during summer and autumn. Some larvae reached the cystacanth stage by late summer or autumn; others overwintered as acanthors or acanthellae and completed development the following spring. The maximum life span of larvae was limited to 1 yr by annual turnover of the isopod population. The distribution of larval A. lucii among isopods was slightly aggregated. There was a peaked pattern in the relationship between isopod length and the prevalence, abundance, and degree of parasite aggregation. The rate of parasite development in laboratory-infected isopods was linearly related to temperature between 9 and 22 C; the temperature threshold was 5.7 C, and the larval parasite required 598 degree-days above threshold to complete development. Among laboratory-infected isopods, 2 mechanisms that could regulate the larval parasite population were detected: intraspecific competition and direct, parasite-induced isopod mortality. However, the intensity of infection in the natural habitat was consistently low and may have remained below the level at which these mechanisms operated.  相似文献   

4.
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing the hosts to increased predation. This is generally considered a parasite strategy evolved to enhance transmission to the next hosts. However, the adaptive value of host manipulation is not clear as it may be associated with costs, such as increased susceptibility to predators that are unsuitable next hosts for the parasites. We examined the ratio between the benefits and costs of host manipulation for transmission success of Acanthocephalus lucii (Acanthocephala), a parasite that alters the hiding behaviour and pigmentation of its isopod hosts. We experimentally compared the susceptibility of infected and uninfected isopods to predation by perch (Perca fluvialis; definitive host of the parasite) and dragonfly larvae (dead end). We found that the parasite predisposed the isopods to predation by both predators. However, the increased predation vulnerability of the infected isopods was higher towards perch. This suggests that, despite the costs due to non-host predation, host manipulation may still be advantageous for the parasite.  相似文献   

5.
It is generally assumed that resistance to parasitism entails costs. Consequently, hosts evolving in the absence of parasites are predicted to invest less in costly resistance mechanisms than hosts consistently exposed to parasites. This prediction has, however, rarely been tested in natural populations. We studied the susceptibility of three naïve, three parasitized and one recently isolated Asellus aquaticus isopod populations to an acanthocephalan parasite. We found that parasitized populations, with the exception of the isopod population sympatric with the parasite strain used, were less susceptible to the parasite than the naïve populations. Exposed but uninfected (resistant) isopods from naïve populations, but not from parasitized populations, exhibited greater mortality than controls, implying that resistance entails survival costs primarily for naïve isopods. These results suggest that parasites can drive the evolution of host resistance in the wild, and that co‐existence with parasites may increase the cost‐effectiveness of defence mechanisms.  相似文献   

6.
Changes to host behaviour as a consequence of infection are common in many parasite-host associations, but their effects on the functional role hosts play within ecosystems are rarely quantified. This study reports that helminth parasites significantly decrease consumption of detritus by their isopod hosts in laboratory experiments. Natural host and parasite densities across eight contiguous seasons were used to estimate effects on the amount of stream detritus-energy processed. Extrapolations using mass-specific processing rates from laboratory results to field patterns suggest that the effects of the parasites occur year round but the greatest impact on the amount of detritus processed by isopods occurs in the autumn when the bulk of leaf detritus enters the stream, and when parasite prevalence in the isopod population is high. Parasites have a lesser impact on the amount of detritus processed in spring and summer when isopods are most abundant, when parasite prevalence is not high, and when fish predation on isopods is high. These results support the idea that parasites can affect the availability of resources critical to other species by altering behaviours related to the functional role hosts play in ecosystems, and suggest that seasonality may be an important factor to consider in the dynamics of these parasite-host interactions.  相似文献   

7.
We observed the behavior and ecology of Chaetodon capistratus infected and uninfected with the ectoparasitic isopod Anilocra chaetodontis to assess whether there may be parasite induced alterations in host biology, host defenses against infection, and/or pathology related to infection. We also examined habitat related differences in infection rates. Infected fish had higher rates of interaction with conspecifics and spent more time in low flow environments (which might improve transmission of juvenile parasites to new hosts). Butterfly fish without isopods were chased more frequently by damselfishes, fed more, and had larger territories. Time spent near conspecifics, and fish condition and gonadosomatic index did not vary between infected and uninfected fish. These results suggest that foureye butterfly fish behavior is altered by the isopod parasite in order for the isopods to more easily gain mates or transmit offspring to new hosts.  相似文献   

8.
Trophically-transmitted parasites frequently alter multiple aspects of their host's phenotype. Correlations between modified characteristics may suggest how different traits are mechanistically related, but these potential relationships remain unexplored. We recorded 5 traits from individual isopods infected with an acanthocephalan (Acanthocephalus lucii): hiding, activity, substrate colour preference, body (pereon) coloration, and abdominal (pleon) coloration. Infected isopods hid less and had darker abdominal coloration than uninfected isopods. However, in 3 different experiments measuring hiding behaviour (time-scales of observation: 1 h, 8 h, 8 weeks), these two modified traits were not correlated, suggesting they may arise via independent mechanisms. For the shorter experiments (1 h and 8 h), confidence in this null correlation was undermined by low experimental repeatability, i.e. individuals did not behave similarly in repeated trials of the experiment. However, in the 8-week experiment, hiding behaviour was relatively consistent within individuals, so the null correlation at this scale indicates, less equivocally, that hiding and coloration are unrelated. Furthermore, the difference between the hiding behaviour of infected and uninfected isopods varied over 8 weeks, suggesting that the effect of A. lucii infection on host behaviour changes over time. We emphasize the importance of carefully designed protocols for investigating multidimensionality in host manipulation.  相似文献   

9.
Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.  相似文献   

10.
Crustaceans are second intermediate hosts to several microphallid species (Trematoda). Some of these parasites are potentially pathogenic or manipulative. A laboratory experiment was performed to assess the impact of microphallids on the survival, growth and fecundity of Cyathura carinata, a protogynous hermaphroditic isopod, widespread within European estuaries. For nearly 12 weeks, experimental populations of infected and non-infected isopods were kept at 25 °C. C. carinata carrying microphallid cysts showed higher mortality rates than non-infected specimens and were not able to produce embryos. The reduced fecundity of infected isopods could be caused by parasite-induced castration and/or by mating failure due to behavioural modifications in one of the sexes. It might also be associated with lower growth rates and lower moulting frequencies, since infected C. carinata were significantly smaller than the non-infected after 9 weeks. This may imply a setback for the isopods to achieve sexual maturity (which may also affect the population sex ratio) and for females to lay their eggs in the marsupia. Regardless of the mechanisms involved, microphallids may have severe consequences for their host populations, through negative effects on survival, growth and fecundity. For species with direct development, such as C. carinata, parasite-induced reproduction failure may contribute to temporal fluctuations of abundance. Based on the present results, it is recommended to include parasites as an important factor influencing host populations from shallow-water ecosystems.  相似文献   

11.
Parasitism changes the host environment and may influence resource allocation between reproductive effort and somatic maintenance. We characterized the impact of dose-dependent schistosome exposure and/or infection establishment on intermediate host survival and reproduction. Four matched groups of Biomphalaria glabrata snails were individually exposed to increasing doses of Schistosoma mansoni parasites, with a fifth control group remaining unexposed. Increased mortality was observed amongst both snails infected and also those snails exposed to the parasite but within which infection did not establish, although only exposed but uninfected snails showed a dose-dependent increase in mortality. Snails also facultatively altered their reproductive output in response to parasite exposure: egg mass production decreased with increasing parasite dose in patently infected snails, whilst, in contrast, exposed but uninfected snails demonstrated a positive association between egg mass production and parasite dose in the post-patent period. These results uniquely suggest an exposure-dose-dependent post-patent fecundity compensation occurring in relation to the risk of future parasite-associated mortality.  相似文献   

12.
Effects of parasites on individual hosts can eventually translate to impacts on host communities. In particular, parasitism can differentially affect host fitness among sympatric and interacting host species. We examined whether the impact of shared parasites varied among host species within the same community. Specifically, we looked at the impacts of the acanthocephalan Acanthocephalus galaxii, the trematodes Coitocaecum parvum and Maritrema poulini, and the nematode Hedruris spinigera, on three host species: the amphipods, Paracalliope fluviatilis and Paracorophium excavatum, and the isopod, Austridotea annectens. We assessed parasite infection levels in the three host species and tested for effects on host survival, behavior, probability of pairing, and fecundity. Maritrema poulini and C. parvum were most abundant in P. excavatum but had no effect on its survival, whereas they negatively affected the survival of P. fluviatilis, the other amphipod. Female amphipods carrying young had higher M. poulini and C. parvum abundance than those without, yet the number of young carried was not linked to parasite abundance. Behavior of the isopod A. annectens was affected by M. poulini infection; more heavily infected individuals were more active. Paracorophium excavatum moved longer distances when abundance of C. parvum was lower, yet no relationship existed with respect to infection by both M. poulini and C. parvum. The differential effects of parasites on amphipods and isopods may lead to community‐wide effects. Understanding the consequences of parasitic infection and differences among host species is key to gaining greater insight into the role of parasite mediation in ecosystem dynamics.  相似文献   

13.
A factorial experiment was conducted to examine if the digenetic trematode parasite Diplostomum phoxini influences minnow growth and survival negatively and if different parasite populations differ in their effects on hosts. Juvenile full-sibling minnows from a lake located at the northern edge of the Swiss Alps were infected experimentally with D. phoxini from either their own or another lake. When exposed to sympatric parasites, the minnows survived a low and a high infection dose more or less equally, but with allopatric parasites mortality increased with infection dose. Parasites did not reduce host growth and minnows exposed to a low infection dose grew quicker than either non-infected ones or ones exposed to a high infection dose. Thus, the results show different patterns of pathogenicity between two parasite populations and suggest that (1) the observed differences are at least partially genetic and that (2) the co-evolved, sympatric host-parasite association has reached a degree of low pathogenicity. Differences between the findings presented here and those of a previously published study are discussed.  相似文献   

14.
The endogenous activity rhythms of the South African endemic isopod Exosphaeroma truncatitelson were explored. Isopods were collected on days coinciding with either a neap or spring tide. High- and low-energy beaches, which vary in the intensity of wave action, were selected as study sites. Isopods, in groups of 10–30, were placed in glass tanks with different experimental conditions: darkness + no sand, darkness with sand and natural ambient light (no sand). Activity of the isopods was measured for 50 h by recording the number of isopods swimming actively during a 30-s period. These isopods exhibited an endogenous activity rhythm which coincided with the tidal cycle even though removed from their natural habitat. Cosine curves were fitted to the observed activity data and statistical differences across variables were investigated. Peak activity was shown to occur shortly after high tide. Similar activity cycles were observed for both neap and spring tides and for different times of the year. Results also indicated that the activity cycles at both low- and high-energy beaches were similar. Two survival advantages of this rhythm are proposed: prevention of stranding on high shores and competitive avoidance with other local isopod species.  相似文献   

15.
Hosts are armed with several lines of defence in the battle against parasites: they may prevent the establishment of infection, reduce parasite growth once infected or persevere through mechanisms that reduce the damage caused by infection, called tolerance. Studies on tolerance in animals have focused on mortality, and sterility tolerance has not been investigated experimentally. Here, we tested for genetic variation in the multiple steps of defence when the invertebrate Daphnia magna is infected with the sterilizing bacterial pathogen Pasteuria ramosa: anti-infection resistance, anti-growth resistance and the ability to tolerate sterilization once infected. When exposed to nine doses of a genetically diverse pathogen inoculum, six host genotypes varied in their average susceptibility to infection and in their parasite loads once infected. How host fecundity changed with increasing parasite loads did not vary between genotypes, indicating that there was no genetic variation for this measure of fecundity tolerance. However, genotypes differed in their level of fecundity compensation under infection, and we discuss how, by increasing host fitness without targeting parasite densities, fecundity compensation is consistent with the functional definition of tolerance. Such infection-induced life-history shifts are not traditionally considered to be part of the immune response, but may crucially reduce harm (in terms of fitness loss) caused by disease, and are a distinct source of selection on pathogens.  相似文献   

16.
An experimental epidemiological approach was chosen to study the survival and infection dynamics of Gyrodactylus salaris on juvenile rainbow trout, Oncorhynchus mykiss , in the laboratory. A marked heterogeneity in the host stock was apparent. The rainbow trout could be divided into three groups on the basis of parasite survival and infection pattern on individually isolated fish: (1) hosts receptive to initial parasite attachment, but unreceptive to parasite establishment and reproduction; (2) hosts moderately susceptible to parasite establishment and reproduction, but which, after a period of restricted parasite population growth, responded, recovered and eliminated the parasites; and (3) hosts very susceptible to parasite infection and reproduction, but which, after a period of significant parasite population growth, responded, recovered and eliminated the parasites. These different patterns are considered to reflect genetic differences between host individuals. Parasite aggregation was also shown to be an important factor in the outcome of the host-parasite association. The parasites were finally eliminated on the individually isolated hosts, but not on hosts maintained in batches and so host population size and immigration of fresh. previously unexposed, hosts appeared to be important for growth and maintenance of the parasite population. The parasite was not found to cause host mortality. Rainbow trout was a suitable host for G. salaris , capable of transmitting the parasite to new localities as a consequence of stocking programmes or migratory behaviour.  相似文献   

17.
Whether or not organisms become infected by parasites is likely to be a complex interplay between host and parasite genotypes, as well as the physiological condition of both species. Details of this interplay are very important because physiology‐driven susceptibility has the potential to confound genetic coevolutionary responses. Here we concentrate on how physiological aspects of infection may interfere with genetic‐based infectivity in a snail–trematode (Potamopyrgus antipodarum/Microphallus sp.) interaction by asking: (1) how does host condition affect susceptibility to infection? and (2) how does host condition affect the survival of infected individuals? We manipulated host condition by experimentally varying resources. Contrary to our expectation, host condition did not affect susceptibility to infection, suggesting that genetics are more important than physiology in this regard. However, hosts in poor condition had higher parasite‐induced mortality than hosts in good condition. Taken together, these results suggest that coevolutionary interactions with parasites may depend on host condition, not by altering susceptibility, but rather by affecting the likelihood of parasite transmission.  相似文献   

18.
Predicting the effects of climate change requires understanding complex interactions among multiple abiotic and biotic factors. By influencing key interactions among host species, parasites can affect community and ecosystem structuring. Yet, our understanding of how multiple parasites and abiotic factors interact to alter ecosystem structure remains limited. To empirically test the role of temperature variation and parasites in shaping communities, we used a multigenerational mesocosm experiment composed of four sympatric freshwater crustacean species (isopods and amphipods) that share up to four parasite species. Mesocosms were assigned to one of four different treatments with contrasting seasonal temperatures (normal and elevated) and parasite exposure levels (continuous and arrested (presence or absence of parasite larvae in mesocosm)). We found that parasite exposure and water temperature had interactive effects on the host community. Continuous exposure to parasites altered the community structure and differences in water temperature altered species abundance. The abundance of the amphipod Paracalliope fluviatilis decreased substantially when experiencing continuous parasite exposure and elevated water temperatures. Elevated temperatures also led to parasite-induced mortality in another amphipod host, Paracorophium excavatum. Contrastingly, isopod hosts were affected much less, suggesting increasing temperatures in conjunction with higher parasite exposure might increase their relative abundance in the community. Changes in invertebrate host populations have implications for other species such as fish and birds that consume crustaceans as well as having impacts on ecosystem processes, such as aquatic primary production and nutrient cycling. In light of climate change predictions, parasite exposure and rise in average temperatures may have substantial impacts on communities and ecosystems, altering ecosystem structure and dynamics.  相似文献   

19.
Experimental infections provide an important foundation for understanding host responses to parasites. While infections with Ribeiroia ondatrae cause mortality and malformations in a wide range of amphibian second intermediate host species, little is known about how the parasite affects its snail first intermediate hosts or even what species can support infection. In this study, we experimentally exposed Helisoma trivolvis, a commonly reported host of R. ondatrae, and Biomphalaria glabrata, a confamilial snail known to host Ribeiroia marini, to increasing concentrations of embryonated eggs of R. ondatrae obtained from surrogate definitive hosts. Over the course of 8 wk, we examined the effect of parasite exposure on infection status, time-to-cercariae release, host size, and mortality of both snail species. Helisoma trivolvis was a highly competent host for R. ondatrae infection, with over 93% infection in all exposed snails, regardless of egg exposure level. However, no infections were detected among exposed B. glabrata, despite previous accounts of this snail hosting a congener parasite. Among exposed H. trivolvis, high parasite exposure reduced growth, decreased time-to-cercariae release, and caused marginally significant increases in mortality. Interestingly, while B. glabrata snails did not become infected with R. ondatrae, individuals exposed to 650 R. ondatrae eggs grew less rapidly than unexposed snails, suggesting a sub-lethal energetic cost associated with parasite exposure. Our results highlight the importance of using experimental infections to understand the effects of parasite exposure on host- and non-host species, each of which can be affected by exposure.  相似文献   

20.
Empirical studies often reveal deleterious effects of parasites on host survival, but the ecological and environmental processes modulating parasite‐associated host mortality are not well understood. We conducted meta‐analysis of experimental studies assessing parasite‐associated mortality (n = 52) to evaluate broad‐scale patterns in host mortality risk relative to host or parasite taxon, parasite life cycle, or local environmental conditions. Overall, likelihood of host mortality was ~2.6 times higher among infected individuals when compared with hosts that either lacked parasites or had experimentally‐reduced parasite burdens. Parasites with complex life cycles reliant on predation‐mediated transmission generally were associated with higher mortality risk than those exploiting other transmission strategies. We also detected a negative relationship between parasite‐associated host mortality and latitude; host mortality risk declined by ~2.6% with each degree increase in latitude. This result indicated the likely importance of abiotic factors in determining parasite effects. Host taxonomy further influenced parasite‐associated mortality risk, with amphibian, fish, and mollusc hosts generally having higher hazard than arthropod, mammal, and bird hosts. Our results suggest patterns that conform to the predicted link between host mortality and parasite transmissibility, and pathogenicity. The relationship between host mortality and latitude in particular may portend marked shifts in host–parasite relationships pursuant to ongoing and projected global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号