首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of nitrate (doses of 600 and 1200 mg/kg/day during 14 days) and sodium nitrite (60 and 120 mg/kg/day during 14 days) on germ cells of male mice were investigated. The mode of application was stomach intubation. The germ cell stages analysed were spermatids (for the heritable effects) and differentiating and stem-cell spermatogonia (for direct effects).A lack of heritable translocations, sperm abnormalities, as well as morphological changes, such as changes in eyes, coat colour, testes and body weight, was demonstrated in F1 males originating from treated P males. Significant effects in treated males were found with respect to: (1) sex-chromosomal univalency in the diakinesis-methaphase I stage after the treatment of stem spermatogonia (both doses of sodium nitrate and the higher dose of sodium nitrite), (2) sperm-head abnormalities after treatment of differentiating spermatogonia (the higher dose of sodium nitrate and both doses of sodium nitrite), and (3) fertility after treatment of spermatids (the higher dose of sodium nitrite). Nonmutagenic effects and possible carcinogenic potential of the tested doses are discussed.  相似文献   

2.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

3.
In the present study, we describe a novel mouse model for inducible germ cell ablation. The mice express herpes simplex virus thymidine kinase (HSV-TK) under the inhibin-alpha subunit promoter (Inhalpha). When adult transgenic (TG) mice were treated with famciclovir (FCV) for 4 wk, their spermatogenesis was totally abolished, with only Sertoli cells and few spermatids remaining in the seminiferous tubules. However, testicular steroidogenesis was not affected. Shorter treatment periods allowed us to follow up the progression of germ cell death: After 3 days, spermatogonia and preleptotene spermatocytes were no longer present. After a 1-wk treatment, spermatogonia, preleptotene, and zygotene spermatocytes were missing and the amount of pachytene spermatocytes was decreased. After a 2-wk treatment, round and elongating spermatids were present. During the third week, round spermatids were lost and, finally, after a 4-wk treatment, only Sertoli cells and few spermatids were present. Interestingly, the transgene is detected in Leydig and Sertoli cells but not in spermatogonia. This suggests that FCV is phosphorylated in Sertoli cells, and thereafter, leaks to neighboring spermatogonia, apparently through cell-cell junctions present, enabling trafficking of phosphorylated FCV. Because of the many mitotic divisions they pass through, the spermatogonia are very sensitive to toxins interfering with DNA replication, while nondividing Sertoli cells are protected. Using transillumination-assisted microdissection of the seminiferous tubules, the gene-expression patterns analyzed corresponded closely to the histologically observed progression of cell death. Thus, the model offers a new tool for studies on germ cell-Sertoli cell interactions by accurate alteration of the germ cell composition in seminiferous tubules.  相似文献   

4.
Male germ cells are susceptible to radiation-induced injury, and infertility is a common problem after total-body irradiation. Here we investigated, first, the effects of irradiation on germ cells in mouse testis and, second, the role of sphingosine-1-phosphate (S1P) treatment in radiation-induced male germ cell loss. Irradiation of mouse testes mainly damaged the early developmental stages of spermatogonia. The damage was seen by means of DNA flow cytometry 21 days after irradiation as decreasing numbers of spermatocytes and spermatids with increasing amounts of ionizing radiation (0.1-2.0 Gy). Intratesticular injections of S1P given 1-2 h before irradiation (0.5 Gy) did not protect against short-term germ cell loss as measured by in situ end labeling of DNA fragmentation 16 h after irradiation. However, after 21 days, in the S1P-treated testes, the numbers of primary spermatocytes and spermatogonia at G2 (4C peak as measured by flow cytometry) were higher at all stages of spermatogenesis compared with vehicle-treated testes, indicating protection of early spermatogonia by S1P, whereas the spermatid (1C) populations were similar. In conclusion, S1P appears to protect partially (16%-47%) testicular germ cells against radiation-induced cell death. This warrants further studies aimed at development of therapeutic agents capable of blocking sphingomyelin-induced pathways of germ cell loss.  相似文献   

5.
Increases in the survival rate of men treated with chemotherapeutic drugs and their desire to have children precipitate concerns about the effects of these drugs on germ cells. Azoospermia, oligospermia, and infertility are common outcomes resulting from treatment with cyclophosphamide, an alkylating agent. Exposure of male rats to cyclophosphamide results in dose-dependent and time-specific adverse effects on progeny outcome. Elucidation of the effects of chronic low-dose cyclophosphamide treatment on the expression of stress response genes in male germ cells may provide insight into the mechanisms underlying such adverse effects. Male rats were gavaged with saline or cyclophosphamide (6 mg/kg) for 4-5 wk; pachytene spermatocytes, round spermatids, and elongating spermatids were isolated; RNA was extracted and probed on cDNA arrays containing 216 cDNAs. After saline treatment, 125 stress response genes were expressed in pachytene spermatocytes (57% of genes studied), 122 in round spermatids (56%), and 83 in elongating spermatids (38%). Cyclophosphamide treatment reduced the number of genes detected in all germ cell types. The predominant effect of chronic cyclophosphamide exposure was to decrease the expression level of genes in pachytene spermatocytes (34% of genes studied), round spermatids (29%), and elongating spermatids (4%). In elongating spermatids only, drug treatment increased the expression of 8% of the genes studied. The expression profiles of genes involved in DNA repair, posttranslational modification, and antioxidant defense in male germ cells were altered by chronic cyclophosphamide treatment. We hypothesize that the effects of cyclophosphamide exposure on germ cell gene expression during spermatogenesis may have adverse consequences on male fertility and progeny outcome.  相似文献   

6.
The effect of the mutation for white belly spot controlled by the dominant gene W on spermatogenesis in mice was examined by experimental cryptorchidism and its surgical reversal. The course of spermatogenesis from spermatogonia to spermatid was normal in intact testes of W/+ mice. In cryptorchid testes, there was no difference in the number and activity of Type A spermatogonia between the testes of W/+ and +/+ mice, in mitotic and labelling indices. Although surgical reversal of the cryptorchid testis resulted in regenerative differentiation of germ cells in both genotypes, the recovery of cell differentiation in the W/+ testis was slower than in the +/+ testis. There were fewer germ cells, such as intermediate-Type B spermatogonia or more advanced ones, in W/+ testes. On Day 17 after surgical reversal, cell associations in W/+ testes were abnormal and the numbers of intermediate-Type B spermatogonia, spermatocytes and spermatids were approximately 70, 50 and 15%, respectively, of those in +/+ testes. These results indicate that the W gene affects spermatogenic cell differentiation in adult mice.  相似文献   

7.
Deficiency of acid sphingomyelinase (ASM), an enzyme responsible for producing a pro-apoptotic second messenger ceramide, has previously been shown to promote the survival of fetal mouse oocytes in vivo and to protect oocytes from chemotherapy-induced apoptosis in vitro. Here we investigated the effects of ASM deficiency on testicular germ cell development and on the ability of germ cells to undergo apoptosis. At the age of 20 weeks, ASM knock-out (ASMKO) sperm concentrations were comparable with wild-type (WT) sperm concentrations, whereas sperm motility was seriously affected. ASMKO testes contained significantly elevated levels of sphingomyelin at the age of 8 weeks as detected by high-performance, thin-layer chromatography. Electron microscopy revealed that the testes started to accumulate pathological vesicles in Sertoli cells and in the interstitium at the age of 21 days. Irradiation of WT and ASMKO mice did not elevate intratesticular ceramide levels at 16 h after irradiation. In situ end labeling of apoptotic cells also showed a similar degree of cell death in both groups. After a 21-day recovery period, the numbers of primary spermatocytes and spermatogonia at G2 as well as spermatids were essentially the same in the WT and ASMKO testes, as detected by flow cytometry. In serum-free cultures both ASMKO and WT germ cells showed a significant increase in the level of ceramide, as well as massive apoptosis. In conclusion, ASM is required for maintenance of normal sphingomyelin levels in the testis and for normal sperm motility, but not for testicular ceramide production or for the ability of the germ cells to undergo apoptosis.  相似文献   

8.
Chymotrypsin inhibitor isolated from Ascaris suum (ACHI) was tested for the induction of dominant lethal mutations in male mice. Dominant lethal effects of ACHI for the main stages of germ cell development were analyzed by mating at specific time points after dosing. Two groups of adult BALB/c males received 24 or 40 mg per kilogram body weight (BW) per day intraperitoneal (IP) injection of ACHI in sterile phosphate-buffered saline (PBS) for five consecutive days (subacute exposure). Males from a third group were administered single IP injections of ACHI—60 mg/kg BW (acute exposure). The control group received concurrent injections of PBS for five successive days. After the last dose, each male was mated with two untreated females. For fractionated examination with regard to successive germ cell stages (spermatozoa, spermatids, spermatocytes, spermatogonia), every second week, two other untreated virgin females were placed with each male for mating. The uteri of the females were inspected on the 15th day of gestation, and preimplantation loss and postimplantation loss determined from dominant lethal parameters. Exposure of mice germ cells to ACHI did not impair mating activity of males. Fertility index was reduced (P < 0.05) only for females mated at the third week with males exposed to the highest dose of ACHI. In the females bred to ACHI-treated males, significant (P < 0.05) increase in preimplantation loss was observed at postinjection weeks 1 (reflecting exposure to spermatozoa after single treatment and to spermatozoa or late spermatids after subacute dosing) and 3 (reflecting exposure to mid and early spermatids for acute dosing and to mid and early spermatids or late spermatocytes following acute treatment), regardless of dose and length of exposure to the inhibitor. At the 60-mg/kg-BW group, a significant increase of this parameter was also noted at week 5 (reflecting exposure to early spermatocytes). During mating days 15–21, a significant (P < 0.05) increase in postimplantation loss and dominant lethal effects were observed for all doses of ACHI. Acute ACHI exposure 5 weeks prior to mating resulted in dominant lethal effects in early spermatocytes. These preliminary data suggest that ACHI induces dominant lethal mutations at postmeiotic and meiotic stages of spermatogenesis, but spermatids are the most sensitive cell stage to the effect of ACHI. These results show that ACHI may be one of the factors causing disturbances in spermatogenesis leading to a reduction of host reproductive success.  相似文献   

9.
Testes from 47 stallions, 1-20 yr of age, were used to examine the influence of age on Sertoli and germ cell populations as well as on functional activity of Sertoli cells. For these stallions, the number of Sertoli cells per paired testes declined linearly with age, and was only 41.7% as great at age 20 as at age 2. However, development of reproductive organs proceeded until age 12-13, as evident from increases in paired testes weight and quantitative rates of spermatozoal production. Although the absolute number of Sertoli cells declined during this period of development, individual Sertoli cells displayed a remarkable capacity to accommodate greater numbers of developing germ cells. Between age 2 and age 12, the mean numbers of developing spermatogonia, young primary spermatocytes, old primary spermatocytes, and round spermatids supported by each Sertoli cell at Stage I of spermatogenesis increased by 49, 176, 153, and 161%, respectively.  相似文献   

10.
Testicular germ cell populations of biopsies from 32 male bonnet monkeys in 5 different age groups were quantitated in a flow cytometer after labelling of germ cell DNA with the specific fluorochrome, 4,6-diamidino phenyl indole. The 5 quantifiable populations were spermatogonia (2C), preleptotene spermatocytes (S phase), primary spermatocytes (4C), round spermatids (1C) and elongate spermatids (HC). The seminiferous tubules of immature 3-4-year-old monkey had only Sertoli cells and spermatogonia (2C). At 5-6 years, germ cells in S-phase (9.5%), 4C (11.1%), 1C (41.8%) and HC (17.1%) stages of maturation appeared for the first time but at 7-8 years of age and beyond all cell types except HC decreased while 1C remained relatively constant. Histometric analysis correlated well with the flow-cytometric data. The decrease in cells of 2C, S-phase and 4C stages was associated with an increase in mitotic index, signifying acceleration in the kinetics of germ cell transformation into subsequent cell types. The total turnover in cell transformation (1C:2C) was significantly (P less than 0.01) increased at and beyond 7-8 years. Maximum transition from 2C to 4C occurred at 5-6 years (4C:2C ratio 0.8 at 5-6 years and 0.6 at 7-8 years). The ratio HC:1C (kinetics of cell transformation during spermiogenesis) attained near total efficiency only by 10 years of age (1.08 at 10-14 years; 0.9 at 18-20 years). Also, the cell associations within the seminiferous tubules of monkeys greater than or equal to 10 years of age were better defined than those of younger animals. The changes in germ cell ratios correlated well with alterations in testicular volume, sperm numbers in the ejaculate and surges of testosterone and increments in FSH in the serum, characteristic of development of sexual maturity. It is apparent from this study that DNA flow cytometry of testicular germ cell populations reveals subtle changes in spermatogenic status of bonnet monkeys with a high degree of sensitivity.  相似文献   

11.
The chemotherapeutic agent busulfan was tested for the induction of dominant lethal and specific-locus mutations in male mice. A dose of 5 mg/kg b.w. of busulfan induces dominant lethal mutations in spermatozoa. A dose of 20 mg/kg b.w. induces dominant lethal mutations in spermatozoa and spermatids. A total of 83,196 offspring were scored in the specific-locus experiments. Busulfan-induced specific-locus mutations were recovered in spermatozoa and spermatids, but not in spermatogonia. The sensitivity patterns for the induction of dominant lethal and specific-locus mutations by busulfan in germ cells of male mice are similar but not identical.  相似文献   

12.
The study was undertaken to find out whether or not chronic stress-induced alterations in spermatogenesis are accompanied by oxidative damage in the testis and reversibility of these effects. Adult male rats (n?=?10) were subjected to restraint for 1 h and later after a gap of 4 h to forced swimming exercise for 15 min daily for 60 days and controls (n?=?5) were maintained without disturbance. After treatment period, controls and 5 rats in stress group were killed and remaining rats in stress group were maintained without any treatment for 4 months and then autopsied to find out whether effects are reversible or not. The body and testicular weight, total sperm count, and mean number of type A spermatogonia, mid-pachytene spermatocytes, stage 7 spermatids, and elongated spermatids (cellular association in stage VII of spermatogenesis) showed a significant decrease whereas the abnormal sperm count and germ cell apoptosis were increased in stressed and recovery group rats compared to controls. Activities of testicular SOD, CAT, GPx, and GST were significantly decreased whereas MDA levels were significantly increased in stressed rats compared to controls. The SOD, GST, and CAT activities of recovery groups were significantly lower than controls, whereas MDA levels and GPx activity of these rats did not differ from controls. The results, for the first time, reveal that stress-induced loss of germ cells leading to decrease in sperm count may be due to oxidative damage caused by chronic stress and majority of these changes are not reversible.  相似文献   

13.
To elucidate the mechanism of proliferation and differentiation of testicular germ cells, donor testicular germ cells labeled with enhanced green fluorescent protein (eGFP) were transplanted to recipient seminiferous tubules. The kinetics of colonization as well as of differentiation of the donor cells was followed in the same transplanted tubules (alive) under ultraviolet light. One week after transplantation, clusters of fluorescent cells were randomly spread as dots in the recipient seminiferous tubule, whereas non-homed cells flowed out from the testis to the epididymis. By 4 weeks after transplantation, green germ cells were observed with weak and moderate fluorescence along the recipient seminiferous tubule. By 8 weeks, proliferation and differentiation of the germ cells occurred, resulting in strong fluorescence in the middle part of the seminiferous tubule but in weak and moderate fluorescence at both terminals. The length of the fluorescent positive seminiferous tubule became longer. Detailed histological analyses of the recipient tubules indicated that the portions of the seminiferous tubule in weak, moderate, and strong fluorescence contained the spermatogonia, spermatogonia with spermatocytes, and all types of germ cells including spermatids, respectively. Thus, testicular stem cells colonized first as dots within 1 week, and then proliferated along the basement membrane of the seminiferous tubules followed by differentiation.  相似文献   

14.
Spermatogenesis is a stepwise cellular differentiation process involving proliferation and commitment to differentiate in spermatogonia, meiosis in spermatocytes, and morphological changes in round spermatids. The whole process is regulated by intercellular communication between the germ cells and the supporting cells. In order to investigate whether neurotrophin family and their receptors contribute to the intercellular communication, we examined the expression of neurotrophins and their receptors in testis during spermatogenesis. One of neurotrophin family, NT-3 was expressed in spermatocytes and spermatogonia while its high affinity receptor, TrkC was found mainly in late spermatids and their low affinity receptor, TrkA in spermatocytes and round spermatids. On the other hand, BDNF immunoreactivity was found in Sertoli cells while its high affinity receptor, TrkB was found in spermatogonia. The temporally and spatially regulated expression of neurotrophins, NT-3 and BDNF, and their receptors, TrkC and TrkB, during male germ cell development suggests that neurotrophins play as the paracrine factors in the intercellular communication between the germ cells and the supporting somatic cells to control germ cell development.  相似文献   

15.
16.
Our previous studies (10, 11) showed that mammalian follicle-stimulating hormone (FSH) alone was indispensable and sufficient for the initiation and promotion of spermatogenesis from secondary spermatogonia to primary spermatocytes in organ culture of testes fragments from the newt, Cynops pyrrhogaster. The present study demonstrated that FSH promoted in the same model system the differentiation of primary spermatocytes even further: to the stage of elongated spermatids. When testes fragments, consisting of somatic cells and germ cells (mostly primary spermatocytes), were cultured in a control medium for three weeks, only round spermatids and spermatogonia were observed; both the diameter of the cysts and the viability of the germ cells decreased to about 10–15% of the original level. On the other hand, when the medium was supplemented with FSH, elongated spermatids appeared by the second week; both the diameter of the cysts and the viability of the germ cells were maintained at a higher level than in the control medium. The effect of FSH was dose-dependent. However, neither transferrin, androgens (testosterone and 5α-dihydrotestosterone) nor luteinizing hormone (LH) was effective. The addition of cyanoketone, a specific inhibitor of 3β-hydroxy-Δ5-steroid dehydrogenase (3β-HSD) (32), to the FSH-containing medium did not prevent the differentiation promoted by FSH, indicating that it is unlikely that Δ4-steroid metabolites produced in fragments by FSH acted directly on germ cells. Insulin was found to improve the viability of germ cells during a 2 week of culture period. In the presence of FSH, the cells in various differentiative stages had morphological characteristics very similar to those in vivo, whereas in the absence of FSH primary spermatocytes showed abnormal features in their nuclei and cytoplasm, indicating that they were deteriorating. These results and our previous results (1–3) suggest that FSH promotes primary spermatocytes to differentiate into elongated spermatids probably by stimulating Sertoli cells to secrete factors which then act on the germ cells.  相似文献   

17.
As a prerequisite for studies using mutant mice, we established a mouse model for induction of male germ cell apoptosis after deprivation of gonadotropins and intratesticular testosterone (T). We employed a potent long acting gonadotropin-releasing hormone antagonist (GnRH-A), acyline, alone or in combination with an antiandrogen, flutamide for effective induction of germ cell apoptosis in mice. Combined treatment with continuous release of acyline (3 mg/kg BW/day) with flutamide (in the form of sc pellets of 25 mg) resulted in almost the same level of suppression of spermatogenesis, as judged by testis weight and by germ cell apoptotic index, in 2 weeks as that reported for rats after treatment with 1.25 mg/kg BW Nal-Glu GnRH-A for the same time period. Within the study paradigm, the maximum suppression of spermatogenesis occurred after a single sc injection of high (20 mg/kg BW) dose of acyline with flutamide. The combined treatment resulted in complete absence of elongated spermatids. Germ cell counts at stages VII-VIII showed a significant (P < 0.05) reduction in the number of preleptotene (27.1%) and pachytene spermatocytes (81.9%), and round spermatids (96.6%) in acyline + flutamide group in comparison with controls. In fact, treatment with a single high (20 mg/kg BW) dose of acyline combined with flutamide in mice achieved same or greater level of suppression, measured by germ cell counts at stages VII-VIII, in two weeks when compared with those reported after daily treatment with Nal-Glu GnRH-A for 4 weeks in rats. Both plasma and testicular T levels were markedly suppressed after administration of acyline alone either by miniosmotic pump or by a single sc injection. Addition of flutamide to acyline had no discernible effect on plasma or intratesticular T levels when compared with acyline alone. These results demonstrate that optimum suppression of spermatogenesis through increased germ cell death is only possible in mice if total abolition of androgen action is achieved and further emphasize the usefulness of acyline + flutamide treated mice as a suitable model system to study hormonal regulation of testicular germ cell apoptosis.  相似文献   

18.
Type I (α and β) interferons (IFNs) elicit antiproliferative and antiviral activities via the surface receptor IFNAR. Serendipitous observations in transgenic mice in 1988 strongly suggested that IFNα/β overexpression in the testis disrupts spermatogenesis. Here, we compare a new mouse strain transgenic for IFNβ (Tg10) and a sister strain lacking the IFNAR1 subunit of IFNAR (Tg10-Ifnar1(-/-)), both strains expressing the transgene in the testis. The main source of IFNβ RNA was the spermatid population. Importantly, the Tg10 mice, but not the double mutant Tg10-Ifnar1(-/-), showed altered spermatogenesis. The first IFNAR-dependent histological alteration was a higher apoptosis index in all germ cell categories apart from non-dividing spermatogonia. This occurred 3 weeks after the onset of IFNβ production at postnatal day 20 and in the absence of somatic cell defects in terms of cell number, expression of specific cell markers, and hormonal activities. Several known interferon-stimulated genes were up-regulated in Tg10 Sertoli cells and prepachytene germ cells but not in pachytene spermatocytes and spermatids. In concordance with this, pachytene spermatocytes and spermatids isolated from wild-type testes did not display measurable amounts of IFNAR1 and phosphorylated STAT1 upon IFNβ challenge in vitro, suggesting hyporesponsiveness of these cell types to IFN. At day 60, Tg10 males were sterile, and Sertoli cells showed increased amounts of anti-Mullerian hormone and decreased production of inhibin B, both probably attributable to the massive germ cell loss. Type I interferon signaling may lead to idiopathic infertilities by affecting the interplay between germ cells and Sertoli cells.  相似文献   

19.
Apoptosis has been proposed as a mechanism by which testis germ cells are removed during normal and various pathological conditions. To establish a new rapid way to detect stage-specific apoptosis in male rat germ cells, their supravital morphology was examined from carefully squashed monolayers of living cells, after several established toxic treatments, using a phase contrast microscope. The results were compared with early detection of apoptosis using annexin V and propidium iodide (PI) stainings. The apoptosis of type-A spermatogonia and round spermatids proceeded in a similar way to somatic cells, while intermediate and type-B spermatogonia, and particularly the dividing spermatocytes, possessed characteristics not entirely typical for apoptosis. Death of elongated spermatids was difficult to assess owing to their compacted chromatin. As the first phases of degeneration seemed different in various germ cell classes, the final stage (karyopycnosis) was similar for most cells. Degenerating cells also showed positive reactions for annexin V and PI. The 'living cell method' provides rapid and accurate possibilities for analysis of stage-specific apoptosis during spermatogenesis. This method is not influenced by artefacts induced by fixation, embedding and sectioning. It may be developed further for routine analyses of the accurate stage-specific effects of various physical and chemical effects on mammalian and human spermatogenesis.  相似文献   

20.
Telomeres, the noncoding sequences at the ends of chromosomes, progressively shorten with each cellular division. Spermatozoa have very long telomeres but they lack telomerase enzymatic activity that is necessary for de novo synthesis and addition of telomeres. We performed a telomere restriction fragment analysis to compare the telomere lengths in immature rat testis (containing type A spermatogonia) with adult rat testis (containing more differentiated germ cells). Mean telomere length in the immature testis was significantly shorter in comparison to adult testis, suggesting that type A spermatogonia probably have shorter telomeres than more differentiated germ cells. Then, we isolated type A spermatogonia from immature testis, and pachytene spermatocytes and round spermatids from adult testis. Pachytene spermatocytes exhibited longer telomeres compared to type A spermatogonia. Surprisingly, although statistically not significant, round spermatids showed a decrease in telomere length. Epididymal spermatozoa exhibited the longest mean telomere length. In marked contrast, telomerase activity, measured by the telomeric repeat amplification protocol was very high in type A spermatogonia, decreased in pachytene spermatocytes and round spermatids, and was totally absent in epididymal spermatozoa. In summary, these results indicate that telomere length increases during the development of male germ cells from spermatogonia to spermatozoa and is inversely correlated with the expression of telomerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号