首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last few years microalgae have gained increasing interest as a natural source of valuable compounds and as bioreactors for recombinant protein production. Natural high-value compounds including pigments, long-chain polyunsaturated fatty acids, and polysaccharides, which have a wide range of applications in the food, feed, cosmetics, and pharmaceutical industries, are currently produced with nontransgenic microalgae. However, transgenic microalgae can be used as bioreactors for the production of therapeutic and industrially relevant recombinant proteins. This technology shows great promise to simplify the production process and significantly decrease the production costs. To date, a variety of recombinant proteins have been produced experimentally from the nuclear or chloroplast genome of transgenic Chlamydomonas reinhardtii. These include monoclonal antibodies, vaccines, hormones, pharmaceutical proteins, and others. In this review, we outline recent progress in the production of recombinant proteins with transgenic microalgae as bioreactors, methods for genetic transformation of microalgae, and strategies for highly efficient expression of heterologous genes. In particular, we highlight the importance of maximizing the value of transgenic microalgae through producing recombinant proteins together with recovery of natural high-value compounds. Finally, we outline some important issues that need to be addressed before commercial-scale production of high-value recombinant proteins and compounds from transgenic microalgae can be realized.  相似文献   

2.
Large-scale transient gene expression in mammalian cells is being developed for the rapid production of recombinant proteins for biochemical and preclinical studies. Here, the scalability of transient production of a recombinant human antibody in Chinese hamster ovary (CHO) cells was demonstrated in orbitally shaken disposable bioreactors at scales from 50 mL to 50 L. First, a small-scale multiparameter approach was developed to optimize the poly(ethylenimine)-mediated transfection in 50 mL shake tubes. This study confirmed the benefit, both in terms of extended cell culture viability and increased product yield, of mild hypothermic cultivation conditions for transient gene expression in CHO cells. Second, the scalability of the process was demonstrated in disposable shake bioreactors having nominal volumes of 5, 20, and 50 L with final antibody yields between 30 and 60 mg L(-1). Thus, the combination of transient gene expression with disposable shake bioreactors allows for rapid and cost-effective production of recombinant proteins in CHO cells.  相似文献   

3.
Multiple advantages-including the short generation time, large numbers of fertilized eggs, low cost of cultivation and easy maintenance favor the use of fish as bioreactors for the production of pharmaceutical proteins. In the present study, zebrafish eggs were used as bioreactors to produce mature tilapia insulin-like growth factors (IGFs) proteins using the oocyte-specific zona pellucida (zp3) promoter. The chimeric expression plasmids, pT2-ZP-tIGFs-IRES-hrGFP, in which hrGFP was used as reporter of tilapia IGFs expression, were designed to established Tg (ZP:tIGFs:hrGFP) transgenic lines for the expression of tilapia IGF-1 and IGF-2. Recombinant tilapia IGF-1 and IGF-2 were expressed as soluble forms in cytoplasm of fertilized eggs. The content level of tilapia IGF-1 and IGF-2 were 6.5 and 5.0% of the soluble protein, respectively. Using a simple Ni–NTA affinity chromatography purification process, 0.58 and 0.49 mg of purified tilapia IGF-1 and IGF-2 were obtained, respectively, from 650 fertilized eggs. The biological activity of the purified tilapia IGF-1 and IGF-2 was confirmed via a colorimetric bioassay to monitor the growth stimulation of zebrafish embryonic cells (ZF4), tilapia ovary cells (TO-2) and human osteosarcoma epithelial cells (U2OS). These results demonstrate that the use of zebrafish eggs as bioreactors is a promising approach for the production of biological recombinant proteins.  相似文献   

4.
近年来,用于重组蛋白生产的哺乳动物细胞表达领域涌现出一系列革命性的新技术。优化的工程细胞为表达重组蛋白提供了优良的宿主;基于荧光的筛选方法可以快捷地得到高表达细胞株;高通量的培养工艺能够预测适合外源蛋白表达的细胞培养条件;可抛弃式生物反应器为大规模细胞培养提供了更多的选择;大规模瞬时表达技术节省了重组蛋白的生产时间。这些新技术提高了重组蛋白的研发和生产效率,加快了蛋白药物的工业化进程。  相似文献   

5.
'Molecular farming' is the production of recombinant proteins in plants. It is intended to harness the power of agriculture to cultivate and harvest transgenic plants producing recombinant therapeutics. Molecular farming has the potential to provide virtually unlimited quantities of recombinant antibodies for use as diagnostic and therapeutic tools in both health care and the life sciences. Importantly, recombinant antibody expression can be used to modify the inherent properties of plants, for example by using expressed antipathogen antibodies to increase disease resistance. Plant transformation is technically straightforward for model plant species and some cereals, and the functional expression of recombinant proteins can be rapidly analyzed using transient expression systems in intact or virally infected plants. Protein production can then be increased using plant suspension cell production in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can be exploited to produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the 'molecular farming' of recombinant therapeutics, blood substitutes and diagnostics, such as recombinant antibodies.  相似文献   

6.
The importance of glycolysis, as an ATP-producing and substrate-providing pathway, was studied in anoxia-tolerant (goldfish) and anoxia-intolerant (trout) hepatocytes. Inhibition of glycolysis with iodoacetic acid (IAA) left aerobic ATP production largely unaffected in hepatocytes from both species but caused a significant decrease of ATP contents in the goldfish cells. Ouabain-sensitive oxygen consumption (osVo2), an estimate of mitochondrial ATP production coupled to ATP consumption by the Na(+) pump, was significantly reduced in IAA-treated goldfish hepatocytes, whereas it was unaltered in trout hepatocytes. Partial reduction of mitochondrial respiration, achieved by titration with cyanide (CN), strongly stimulated glycolytic flux but did not affect ATP contents of hepatocytes from both species. Under these conditions, osVo2 became undetectable. Rb(+)-uptake rates, providing a direct estimate of Na(+)-pump activity, were in good agreement with estimates derived from osVo2 in IAA-treated cells, showing a decrease in goldfish and no change in trout. However, they indicated persistent Na(+)-pump activity despite the lack of osVo2 in CN-treated cells. Overall, these data indicate that in goldfish hepatocytes Na(+)-pump activity is more dependent on glycolytic ATP production as compared to trout hepatocytes. Protein synthesis of goldfish hepatocytes was inhibited in IAA- and CN-treated cells, possibly reflecting the hierarchical organization of energy metabolism. In trout hepatocytes, protein synthesis could be sustained at control levels, given that energetic substrate provision was not limited.  相似文献   

7.
The molecular breeding of plants that have been genetically engineered for improved disease resistance and stress tolerance has been undertaken with the goal of improving food production. More recently, it has been realized that transgenic plants can serve as bioreactors for the production of proteins or compounds with industrial or clinical uses. Several different recombinant enzymes and antibodies have been produced in this manner. To maximize the potential of industrial plants as a production system for proteins, efficient expression systems utilizing promoters that optimize transgene expression, 5′-untranslated region elements for efficient translation, and appropriate post-translational modifications and localization must be developed. This review summarizes successful examples of the production of recombinant enzymes, antibodies, and vaccines using signal peptides that direct vesicular localization in transgenic plants. We further discuss the modulation of recombinant protein localization to the endoplasmic reticulum, vacuolar system, or extracellular compartments by varying the signal peptide.  相似文献   

8.
The present article describes two new applications of plastic-based cell culture systems in the plant biotechnology domain. Different types of bioreactors are used at Nestlé R&D Center-Tours for large scale culture of plants cells to produce metabolites or recombinant proteins and for mass propagation of selected plant varieties by somatic embryogenesis. Particularly, recent studies are directed to cut down the production costs of these two processes by developing disposable cell culture systems. For large scale culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 l working volumes, validated with several plant species (“Wave and Undertow” and “Slug Bubble” bioreactors). Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has been recently set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 2.5–3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-l glass bioreactors. An improved process has been developed using a 10-l disposable bioreactor consisting in a bag containing a rigid plastic box (“Box-in-Bag” bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design.  相似文献   

9.
金鱼雌核发育单倍体发育过程中的比较蛋白质组学研究   总被引:1,自引:0,他引:1  
前期已有工作发现在金鱼雌核发育单倍体中一些与发育调控相关的重要蛋白质表达受阻导致单倍体的发育畸形。为了进一步阐明单倍体的发育机制,我们共收集了3个不同发育时期金鱼单倍体胚胎(HE-1、HE-2、HE-3)进行雌核发育单倍体的差异蛋白质组研究。研究采用二维凝胶电泳进行分离,利用PDQuest软件进行图谱分析,质谱分析初步鉴定到了15个差异蛋白质。这些蛋白质在金鱼雌核发育单倍体的发育中起着重要作用,为进一步阐明单倍体的发育机制奠定了良好的基础。  相似文献   

10.
Plants are attractive expression systems for the economic production of recombinant proteins. Among the different plant-based systems, plant seed is the leading platform and holds several advantages such as high protein yields and stable storage of target proteins. Significant advances in using seeds as bioreactors have occurred in the past decade, which include the first commercialized plant-derived recombinant protein. Here we review the current progress on seeds as bioreactors, with focus on the different food crops as production platforms and comprehensive strategies in optimizing recombinant protein production in seeds.  相似文献   

11.
An artificial network which can accomplish recombinant protein synthesis guided by cell population in E. coli was constructed. The successful functioning of this network requires two plasmids, pWNB and pET. pWNB is responsible for production of T7 RNA polymerase, which controls pET; pET, in turn, regulates the production of target proteins. Several model proteins were tested and the results show that this E. coli system can be used to efficiently express various recombinant proteins. Since system contains T7 RNA polymerase production elements, it is transferable and applicable to well-characterized E. coli strains. Compared to the IPTG-induced system, an equal or greater amount of target protein can be obtained using this auto-inducible expression system in flasks and bioreactors. Our results suggest that it is a competitive alternative to other expression systems used in labs or for industrial applications.  相似文献   

12.
By sodium dodecylsulfate polyacrylamide gel electrophoresis, the heavy chain of the serum immunoglobulin (IgM) of the goldfish (Carassius auratus) differs not only from other studied vertebrate serum IgM heavy chains, but also from other vertebrate lymphocyte membrane IgM heavy chains including those from the goldfish itself. This difference, an increase in apparent Mr of approximately 5000, was investigated by assessing in comparison with the IgM heavy chain of human and rainbow trout (Salmo gairdneri) the following properties: (1) molecular size by gel filtration in denaturing buffers; (2) carbohydrate content, by direct analysis; (3) intrinsic net charge, by isoelectric focusing; (4) net hydrophobicity, deduced from amino acid analysis; and (5) sodium dodecylsulfate binding by direct measurement. Results indicate that goldfish IgM heavy chain is indistinguishable from other IgM heavy chains in terms of (a) its gel-filtration behavior in denaturing conditions, (b) its carbohydrate content (which is similar to trout IgM heavy chain) and (c) its intrinsic net charge and hydrophobicity. However, goldfish IgM does differ from the other proteins studied in its detergent-binding ability and it is this behavior that is concluded to be the cause of its unusual mobility in sodium dodecylsulfate polyacrylamide gel electrophoresis.  相似文献   

13.
Molecular farming of pharmaceutical proteins   总被引:38,自引:0,他引:38  
Molecular farming is the production of pharmaceutically important and commercially valuable proteins in plants. Its purpose is to provide a safe and inexpensive means for the mass production of recombinant pharmaceutical proteins. Complex mammalian proteins can be produced in transformed plants or transformed plant suspension cells. Plants are suitable for the production of pharmaceutical proteins on a field scale because the expressed proteins are functional and almost indistinguishable from their mammalian counterparts. The breadth of therapeutic proteins produced by plants range from interleukins to recombinant antibodies. Molecular farming in plants has the potential to provide virtually unlimited quantities of recombinant proteins for use as diagnostic and therapeutic tools in health care and the life sciences. Plants produce a large amount of biomass and protein production can be increased using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can also produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the molecular farming of recombinant therapeutics, including vaccines, diagnostics, such as recombinant antibodies, plasma proteins, cytokines and growth factors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
A suspended cell line from Trichoplusia ni embryos was established, and its susceptibility to Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infection was investigated. This cell line had characteristics distinct from the BTI‐Tn5Bl‐4 cell line (Tn5Bl‐4) from T. ni in growth, and showed approximately the same responses to AcMNPV infection, production of occlusion bodies, and levels of recombinant protein expression. No clumps were observed at maximum cell density at late‐log phase in shake‐flask or T‐flask cultures, and thus the cells represent a useful new contribution for baculovirus research. The cells consist of two major morphological types: approximately 70% spindle‐shaped cells and 30% round cells. The cell line was highly susceptible to virus infection and produced around 107 AcMNPV occlusion bodies per cell, on average. Production of β‐galactosidase and secreted alkaline phosphatase was high with 3.97 ± 0.13 × 104IU/mL and 3.48 ± 0.40 IU/mL, respectively. This cell line may be applicable for studies of scale‐up production of viruses or baculovirus‐insect cell expression. We also believe the new line can be a source for cell clones with higher production of virus and recombinant proteins compared to the parent or other existing cell lines such as Tn5Bl‐4.  相似文献   

15.
A new cell line, MSU-TnT4 (TnT4), was established from Trichoplusia ni embryos for use with baculovirus expression vectors and evaluated for its potential for membrane protein production. To evaluate membrane protein synthesis, recombinant baculoviruses were constructed to express the human neurotensin receptor 1 as an enhanced green fluorescent protein (GFP) fusion. TnT4 cells had a doubling time of 21 h and expressed the membrane-GFP fusion protein at approximately twice the level as Sf21 cells from the p10 promoter, as evaluated by GFP intensity. Expression of secreted alkaline phosphatase (SEAP) was similar to that of Sf21 cells. Expression of membrane-GFP fusion proteins in recombinant baculoviruses provides a rapid method for evaluating the potential of new cell lines for the production of membrane proteins using a baculovirus expression vector system (BEVS).  相似文献   

16.
为研究鱼类单倍体血液循环障碍产生机制,人工诱导获得金鱼(Carassius auratus)雌核发育单倍体胚胎并进行活体观察及邻联茴香胺染色,结果显示金鱼雌核发育单倍体胚胎存在不同程度的血液循环不良和红细胞生成缺陷.为进一步探讨其发生的分子机制,利用反义RNA整胚原位杂交技术比较分析了原始造血和血管发生关键基因scl(...  相似文献   

17.
Pichia pastoris is extensively used to produce various heterologous proteins. Amounts of biopharmaceutical drugs and industrial enzymes have been successfully produced by fed-batch high-cell-density fermentation (HCDF) of this cell factory. High levels of cell mass in defined media can be easily achieved and therefore large quantities of recombinant proteins with enhanced activities and lower costs can be obtained through HCDF technology. A robust HCDF process makes a successful transition to commercial production. Recently, efforts have been made to increase the heterologous protein production and activity by the HCDF of P. pastoris. However, challenges around selecting a suitable HCDF strategy exist. The high-level expression of a specific protein in P. pastoris is still, at least in part, limited by optimizing the methanol feeding strategy. Here, we review the progress in developments and applications of P. pastoris HCDF strategies for enhanced expression of recombinant proteins. We focus on the methanol induction strategies for efficient fed-batch HCDF in bioreactors, mainly focusing on various stat-induction strategies, co-feeding, and the limited induction strategy. These processes control strategies have opened the door for expressing foreign proteins in P. pastoris and are expected to enhance the production of recombinant proteins.  相似文献   

18.
以金鱼和斑马鱼为研究对象,运用RT-PCR和Western Blot技术分析蛋白磷酸酶2A(PP2A)结构亚基A(PP2A-A/)在金鱼、斑马鱼成体9种组织和12个发育时期胚胎中mRNA和蛋白水平的表达情况,得到其分化表达模式为:(1)在mRNA水平上,PP2A-A/在金鱼、斑马鱼9种组织中具有较强表达;种属差异性和组织差异性均较大;结构亚基A的两亚型A和A的表达存在差异。(2)在蛋白水平上,PP2A-A/在金鱼、斑马鱼9种组织中均有表达;种属差异性不大但出现明显的组织差异性。(3)PP2A-A/mRNA在金鱼和斑马鱼卵裂期到囊胚期胚胎中大量存在,PP2A-AmRNA在金鱼眼色素期量剧增推测其对金鱼眼色素的形成至关重要。(4)PP2A-A/基因在金鱼、斑马鱼12个发育时期胚胎中均有较高水平的蛋白存在,提示其为维持胚胎的正常发育发挥重要作用。    相似文献   

19.
Standard culture systems of eukaryotic cells generally failed to deliver sufficient amounts of recombinant proteins without increasing the costs of production. We here showed that membrane-based bioreactors, initially developed for the production of monoclonal antibodies, can be very useful for the production using engineered HEK293 cells, of a recombinant proteoglycan called endocan, with achievement of high level expression and efficient long-term production. When compared to standard procedures, the growth in suspension and at high density of these cells in one bioreactor promoted a 60-fold increase of the concentration of the soluble recombinant endocan. These culture conditions did not affect cell viability, stable expression, recognition by specific monoclonal antibodies or electrophoretic profile of the recombinant endocan. Such an easy to scale up system to produce recombinant protein should open soon new opportunities to study structure and functions of endocan or any other glycosylated cell products newly investigated.  相似文献   

20.
Huang L  Li B  Luo C  Xie J  Chen P  Liang S 《Proteomics》2004,4(1):235-243
Recently, it was found that in the gynogenetic haploid and diploid embryos of goldfish, which have exactly the same genome, the haploid condition results in obstruction of gene expression and abnormal development while the diploid embryos have normal gene expression and development. A diploid-dependent regulatory apparatus was proposed to regulate gene expression. To study the difference at the protein expression level of the embryos of haploid and diploid in development, we extracted the total proteins of both the gynogenetic haploid and diploid embryos of goldfish in the same eye formation stage. Two-dimensional polyacrylamide gel electrophoresis was used to separate proteins. The stained gel images were analyzed with the PDQUEST software. A part of protein spots that were differentially expressed in haploid and diploid embryos were identified by matrix assisted laser desorption/ionisation-time of flight-mass spectrometry and database analysis. Sixteen protein spots that were absolutely different (only expressed in diploid embryos but not in haploid embryos or vice versa) and 16 protein spots that were up- and downregulated were identified unambiguously, which include some proteins that are correlative with eyes development, nerve development, developing regulation, cell differentiation, and signal transduction. The different significantly gene expression during embryos developing between diploid and haploid is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号