首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibberellin 2-oxidases (GA2ox) are important enzymes that maintain the balance of bioactive GAs in plants. GA2ox genes have been identified and characterized in many plants, but these genes were not investigated in Brassica napus. Here, we identified 31 GA2ox genes in B. napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes. Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm, and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons. Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups, including two C19-GA2ox and two C20-GA2ox clades. Group 4 is a C20-GA2ox Class discovered recently. Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes. BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome. BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development, and most of them were mainly involved in abiotic responses, regulation of phytohormones and growth and development. Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons, as well as an insight into the biological functions of GA2ox family genes in B. napus.  相似文献   

2.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

3.
Gibberellin (GA) 20-oxidase (GA20ox) is a key enzyme that normally catalyzes the penultimate steps in GA biosynthesis. One of the GA20ox genes in rice (Oryza sativaL.), OsGA20ox2 (SD1), is well known as the Green Revolution gene, and loss-of function mutation in this locus causes semi-dwarfism. Another GA20ox gene, OsGA20ox1, has also been identified, but its contribution to plant stature has remained unclear because no suitable mutants have been available. We isolated a mutant, B142, tagged with a T-DNA containing three CaMV 35S promoters, which showed a tall, GA-overproduction phenotype. The final stature of the B142 mutant reflects internode overgrowth and is approximately twice that of its wild-type parent. This mutant responds to application of both GA3 and a GA biosynthesis inhibitor, indicating that it is a novel tall mutant of rice distinct from GA signaling mutants such as slr1. The integrated T-DNAs, which contain three CaMV 35S promoters, are located upstream of the OsGA20ox1 open reading frame (ORF) in the B142 mutant genome. Analysis of mRNA and the endogenous GAs reveal that biologically active GA level is increased by up-regulation of the OsGA20ox1 gene in B142. Introduction of OsGA20ox1 cDNA driven by 35S promoter into the wild type phenocopies the morphological characteristics of B142. These results indicate that the elongated phenotype of the B142 mutant is caused by up-regulation of the OsGA20ox1 gene. Moreover, the final stature of rice was reduced by specific suppression of the OsGA20ox1 gene expression. This result indicates that not only OsGA20ox2 but also OsGA20ox1 affects plant stature.  相似文献   

4.
5.
6.
Rapid progress in studies on flower development has resulted in refining the classical ‘ABC model’ into a new ‘ABCDE model’ to explain properly the regulation of floral organ identity. Conservation of E-function for flower organ identity among the dicotyledonous (dicot) plants has been revealed. However, its conservation in monocotyledonous (monocot) plants remains largely unknown. Here, we show the conservation of E-function in rice (Oryza sativaL.) by characterizing tissue culture-induced mutants of two MADS-box genes, OsMADS1and OsMADS5, which form a subclade within the well-supported clade of SEP-genes (E-function) phylogeny. Severe loss-of-function mutations of OsMADS1cause complete homeotic conversion of organs (lodicules, stamens, and carpels) of three inner whorls into lemma- and palea-like structures. Such basic deformed structure is reiterated along with the pedicel at the center of the same floret, indicating the loss of determinacy of the flower meristem. These phenotypes resemble the phenotypes caused by mutations of the dicot E-class genes, such as the Arabidopsis SEP123(SEPALLATA1/2/3) and the petunia FBP2(Floral Binding Protein 2), suggesting that OsMADS1play a very similar role in rice to that of defined E-class genes in dicot plants. In case of the loss-of-function mutation of OsMADS5, no defect in either panicles or vegetative organs was observed. These results demonstrate that OsMADS1clearly possesses E-function, and so, E-function is fundamentally conserved between dicot plants and rice, a monocot model plant.  相似文献   

7.
8.
9.
Parthenocarpy, the productions of seedless fruit without pollination or fertilization, is a potentially desirable trait in many commercially grown fruits, especially in pear, which is self‐incompatible. Phytohormones play important roles in fruit set, a process crucial for parthenocarpy. In this study, 2,4‐dichlorophenoxyacetic acid (2,4‐D), an artificially synthesized plant growth regulator with functions similar to auxin, was found to induce parthenocarpy in pear. Histological observations revealed that 2,4‐D promoted cell division and expansion, which increased cortex thickness, but the effect was weakened by paclobutrazol (PAC), a gibberellin (GA) biosynthesis inhibitor. Phenotypic differences in pear may therefore be due to different GA contents. Hormone testing indicated that 2,4‐D mainly induced the production of bioactive GA4, rather than GA3. Three key oxidase genes function in the GA biosynthetic pathway: GA20ox, GA3ox and GA2ox. In a pear group treated with only 2,4‐D, PbGA20ox2‐like and PbGA3ox‐1 were significantly upregulated. When treated with 2,4‐D supplemented with PAC, however, expression levels of these genes were significantly downregulated. Additionally, PbGA2ox1‐like and PbGA2ox2‐like expression levels were significantly downregulated in pear treated with either 2,4‐D only or 2,4‐D supplemented with PAC. We thus hypothesize that 2,4‐D can induce parthenocarpy by enhancing GA4 biosynthesis.  相似文献   

10.
Flowering of Nicotiana tabacum cv Xhanti depends on gibberellins because gibberellin-deficient plants, due to overexpression of a gibberellin 2-oxidase gene (35S:NoGA2ox3) or to treatment with the gibberellin biosynthesis inhibitor paclobutrazol, flowered later than wild type. These plants also showed inhibition of the expression of molecular markers related to floral transition (NtMADS-4 and NtMADS-11). To investigate further the role of gibberellin in flowering, we quantified its content in tobacco plants during development. We found a progressive reduction in the levels of GA1 and GA4 in the apical shoot during vegetative growth, reaching very low levels at floral transition and beyond. This excludes these two gibberellins as flowering-promoting factors in the apex. The evolution of active gibberellin content in apical shoots agrees with the expression patterns of gibberellin metabolism genes: two encoding gibberellin 20-oxidases (NtGA20ox1 = Ntc12, NtGA20ox2 = Ntc16), one encoding a gibberellin 3-oxidase (NtGA3ox1 = Nty) and one encoding a gibberellin 2-oxidase (NtGA2ox1), suggesting that active gibberellins are locally synthesized. In young apical leaves, GA1 and GA4 content and the expression of gibberellin metabolism genes were rather constant. Our results support that floral transition in tobacco, in contrast to that in Arabidopsis, is not regulated by the levels of GA1 and GA4 in apical shoots, although reaching a threshold in gibberellin levels may be necessary to allow meristem competence for flowering.  相似文献   

11.
12.
13.
Coconuts (Cocos nucifera L.) are divided by the height into tall and dwarf types. In many plants the short phenotype was emerged by mutation of the GA20ox gene encoding the enzyme involved in gibberellin (GA) biosynthesis. Two CnGA20ox genes, CnGA20ox1 and CnGA20ox2, were cloned from tall and dwarf types coconut. The sequences, gene structures and expressions were compared. The structure of each gene comprised three exons and two introns. The CnGA20ox1 and CnGA20ox2 genes consisted of the coding region of 1110 and 1131 bp, encoding proteins of 369 and 376 amino acids, respectively. Their amino acid sequences are highly homologous to GA20ox1 and GA20ox2 genes of Elaeis guineensis, but only 57% homologous to each other. However, the characteristic amino acids two histidines and one aspartic acid which are the two iron (Fe2+) binding residues, and arginine and serine which are the substrate binding residues of the dioxygenase enzyme in the 20G-FeII_Oxy domain involved in GA biosynthesis, were found in the active site of both enzymes. The evolutionary relationship of their proteins revealed three clusters in vascular plants, with two subgroups in dicots and three subgroups in monocots. This result confirmed that CnGA20ox was present as multi-copy genes, and at least two groups CnGA20ox1 and CnGA20ox2 were found in coconut. The nucleotide sequences of CnGA20ox1 gene in both coconut types were identical but its expression was about three folds higher in the leaves of tall coconut than in those of dwarf type which was in good agreement with their height. In contrast, the nucleotide sequences of CnGA20ox2 gene in the two coconut types were different, but the expression of CnGA20ox2 gene could not be detected in either coconut type. The promoter region of CnGA20ox1 gene was cloned, and the core promoter sequences and various cis-elements were found. The CnGA20ox1 gene should be responsible for the height in coconut, which is different from other plants because no mutation was present in CnGA20ox1 gene of dwarf type coconut.  相似文献   

14.
GA 20-oxidase is a key enzyme involved in gibberellin (GA) biosynthesis. In tomato, the GA 20-oxidase gene family consists of three members: GA20ox1, GA20ox2, and GA20ox3. To investigate the roles of these three genes in regulating plant growth and development, we used RNA interference technology to generate three kinds of transgenic tomato plants with suppressed expression of each three individual genes. Suppression of GA20ox1 or GA20ox2 resulted in shorter stems, a decreased length of internodes, and small dark green leaves while plants with decreased expression of GA20ox3 had no visible changes on stems and leaves. The plants of the three transgenic lines can flower and set fruits normally, but the seeds from these plants germinated slower than that from the normal plants. Decreased levels of endogenous GAs were detected in the apex of the three transgenic lines. These results demonstrate that the three GA 20-oxidase genes play different roles in the control of plan vegetative growth, but show no effects on flower and fruit development.Equal contribution authors: J. Xiao and H. Li.  相似文献   

15.
Gibberellin (GA), a plant hormone, is involved in many aspects of plant growth and development both in vegetative and reproductive phases. GA2-oxidase plays a key role in the GA catabolic pathway to reduce bioactive GAs. We produced transgenic Arabidopsis plants expressing GA2-oxidase 4 (AtGA2ox4) under the control of a senescenceassociated promoter (SEN1). As we hypothesized, transgenic plants (SEN1::AtGA2ox4) exhibited a dominant semi-dwarf phenotype with a decrease of bioactive GAs (e.g., GA4 and GA1) up to two-fold compared to control plants. Application of bioactive GA3 resulted in increased shoot length, indicating that the GA signaling pathway functions normally in the SEN1::AtGA2ox4 plants. Expressions of other members of GA2-oxidase family, such as AtGA2ox1, AtGA2ox3, AtGA2ox6, and AtGA2ox8, were decreased slightly in the flower and silique tissues while GA biosynthetic genes (e.g., AtGA20ox1, AtGA20ox2 and AtGA3ox1) were not significantly changed in the SEN::AtGA2ox4 plants. Using proteome profiling (2-D PAGE followed by MALDI-TOF/MS), we identified 29 protein spots that were increased in the SEN1::AtGA2ox4 plants, but were decreased to wild-type levels by GA3 treatment. The majority were found to be involved in photosynthesis and carbon/energy metabolism. Unlike the previous constitutive over-expression of GA2-oxidases, which frequently led to floral deformity and/or loss of fertility, the SEN1::AtGA2ox4 plants retained normal floral morphology and seed production. Accordingly, the expressions of FT and CO genes remained unchanged in the SEN1::AtGA2ox4 plants. Taken together, our results suggest that the dominant dwarf trait carried by SEN1::AtGA2ox4 plants can be used as an efficient dwarfing tool in plant biotechnological applications.  相似文献   

16.
Gibberellins are phytohormones that regulate growth and development of plants. Gibberellin homeostasis is maintained by feedback regulation of gibberellin metabolism genes. To understand this regulation, we manipulated the gibberellin pathway in tobacco and studied its effects on the morphological phenotype, gibberellin levels and the expression of endogenous gibberellin metabolism genes. The overexpression of a gibberellin 3-oxidase (biosynthesis gene) in tobacco (3ox-OE) induced slight variations in phenotype and active GA(1) levels, but we also found an increase in GA(8) levels (GA(1) inactivation product) and a conspicuous induction of gibberellin 2-oxidases (catabolism genes; NtGA2ox3 and -5), suggesting an important role for these particular genes in the control of gibberellin homeostasis. The effect of simultaneous overexpression of two biosynthesis genes, a gibberellin 3-oxidase and a gibberellin 20-oxidase (20ox/3ox-OE), on phenotype and gibberellin content suggests that gibberellin 3-oxidases are non-limiting enzymes in tobacco, even in a 20ox-OE background. Moreover, the expression analysis of gibberellin metabolism genes in transgenic plants (3ox-OE, 20ox-OE and hybrid 3ox/20ox-OE), and in response to application of different GA(1) concentrations, showed genes with different gibberellin sensitivity. Gibberellin biosynthesis genes (NtGA20ox1 and NtGA3ox1) are negatively feedback regulated mainly by high gibberellin levels. In contrast, gibberellin catabolism genes which are subject to positive feedback regulation are sensitive to high (NtGA2ox1) or to low (NtGA2ox3 and -5) gibberellin concentrations. These two last GA2ox genes seem to play a predominant role in gibberellin homeostasis under mild gibberellin variations, but not under large gibberellin changes, where the biosynthesis genes GA20ox and GA3ox may be more important.  相似文献   

17.
18.
19.
We have cloned two genes for gibberellin (GA) 2-oxidase from rice (Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA1 to GA8 and GA20 to GA29-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice. Electronic Publication  相似文献   

20.
MADS-box genes involved in flower development have been isolated and studied in a wide variety of plant species. However, most of these studies are related to dicot species like Antirrhinum majus, Arabidopsis thaliana and Petunia hybrida. Although the floral structures of typical monocot and dicot flowers differ substantially, previous studies indicate that MADS-box genes controlling floral organ identity in dicots can also be identified in monocot plants like rice and maize. To extend this study further to obtain a more global picture of monocot and dicot MADS-box gene evolution, we performed a phylogenetic study using MADS-box genes from A. thaliana and Oryza sativa. Furthermore, we investigated whether the identified orthologues of Arabidopsis and rice have a conserved expression profile that could indicate conservation of function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号