首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study of the forelimbs of the semifossorial prairie dog, Cynomys gunnisoni , and the scansorial tree squirrel, Sciurus niger, was focused on the musculoskeletal design for digging in the former and climbing in the latter. Based on lever arm mechanics, it was expected that the forelimb of the prairie dog would show features appropriate to the production of relatively large forces and that of the fox squirrel to relatively great velocity. Force and lever arm measurements were made of select forelimb muscles at the shoulder, elbow, and wrist joints for a series of angles in both species. Contraction time and fatigue indexes were determined for the same forelimb muscles. Contrary to expectation, in the few cases in which significant (P less than .05) differences were found, the forces, lever arms, and torques (force times its lever arm) were greater in the smaller fox squirrel. The observed variation in the torques produced fits the demands on the forelimb during climbing and digging as estimated from films. Several forelimb muscles of the fox squirrel show significantly higher mean contraction times than do the homologous muscles of the prairie dog. There were no significant differences between the two species in the fatigability of the selected forelimb muscles, although the mean fatigue index was always higher (less fatigable muscle) in the prairie dog. Similarities in the forelimbs of these two sciurids suggest that only minor modifications may have been required of the ancestral forelimb in order for descendent forms to operate successfully as climbers and diggers .  相似文献   

2.
The purpose of this study was to investigate which muscle group, the agonist or antagonist, contributes most to the shoulder position sense (SPS). The SPS was tested under 2 conditions: fatigued shoulder internal rotator (IR) muscles (pectoralis major and latissimus dorsi) and fatigued external rotator (ER) muscles (infraspinatus). In each condition, the SPS was measured before and after a fatiguing task involving the IR or ER muscles by repeating shoulder joint rotation. SPS was measured using a method in which subjects reproduced a memorized shoulder joint rotation angle. The position error values in all conditions (fatigued IR and ER muscles) and measurement periods (before- and after-fatigue task) were compared using 2-way analysis of variance with repeated measures (IR/ER × before/after). Position error increased significantly after both fatigue tasks (before- vs. after-fatigue: IR muscle, 2.68° vs. 4.19°; ER muscle, 2.32° vs. 4.05°). In other words, SPS accuracy decreased when either the agonist or antagonist muscle was fatigued. This finding indicated that SPS may be affected by an integrated information of the afferent signals in the agonist and antagonist muscles.  相似文献   

3.
The influence of external factors such as arm posture, hand loading and dynamic exertion on shoulder muscle activity is needed to provide insight into the relationship between internal and external loading of the shoulder joint. Surface electromyography was collected from 8 upper extremity muscles on 16 participants who performed isometric and dynamic shoulder exertions in three shoulder planes (flexion, mid-abduction and abduction) covering four shoulder elevation angles (30°, 60°, 90° and 120°). Shoulder exertions were performed under three hand load conditions: no load, holding a 0.5 kg load and 30% grip. It was found that adding a 0.5 kg load to the hand increased shoulder muscle activity by 4% maximum voluntary excitation (MVE), across all postures and velocities. Performing a simultaneous shoulder exertion and hand grip led to posture specific redistribution of shoulder muscle activity that was consistent for both isometric and dynamic exertions. When gripping, anterior and middle deltoid activity decreased by 2% MVE, while posterior deltoid, infraspinatus and trapezius activity increased by 2% MVE and biceps brachii activity increased by 6% MVE. Increased biceps brachii activity with gripping may be an initiating factor for the changes in shoulder muscle activity. The finding that hand gripping altered muscle activation, and thus the internal loading, of the shoulder may play an important role in shoulder injury development and rehabilitation.  相似文献   

4.
The purpose of this study was to determine the effects of shoulder muscle fatigue on three dimensional scapulothoracic and glenohumeral kinematics. Twenty healthy subjects participated in this study. Three-dimensional scapulothoracic and glenohumeral kinematics were determined from electromagnetic sensors attached to the scapula, humerus, and thorax. Surface electromyographic (EMG) data were collected from the upper and lower trapezius, serratus anterior, anterior and posterior deltoid, and infraspinatus muscles. Median power frequency (MPF) values were derived from the raw EMG data and were used to indicate the degree of local muscle fatigue. Kinematic and EMG measures were collected prior to and immediately following the performance of a shoulder elevation fatigue protocol. Following the performance of the fatigue protocol subjects demonstrated more upward and external rotation of the scapula, more clavicular retraction, and less humeral external rotation during arm elevation. All muscles with the exception of the lower trapezius showed EMG signs of fatigue, the most notable being the infraspinatus and deltoid muscles. In general, greater scapulothoracic motion and less glenohumeral motion was observed following muscle fatigue. Further studies are needed to determine what effects these changes have on the soft tissues and mechanics of the shoulder complex.  相似文献   

5.
The internal organization of myofibers and connective tissues has important physiologic implications for muscle function and for naturalistic behavior. In this study of forelimb muscle morphology and primate locomotion, fiber architecture is examined in the intrinsic muscles of the shoulder (musculi deltoideus, infraspinatus, supraspinatus, subscapularis, teres major, and t. minor) and arm (m. coracobrachialis, biceps brachii, brachialis, and triceps brachii) in the semiterrestrial vervets (Chlorocebus aethiops) and arboreal red-tailed guenons (Cercopithecus ascanius). Wet weights and lengths of whole muscles, lengths of fasciculi and their associated proximal and distal tendons, and angles of pinnation were measured to estimate morphologic correlates of physiologic properties of individual muscles: force, velocity/excursion, energy expense, and relative isometric or isotonic contraction. Neither mean total-shoulder:total-arm ratios for muscle mass nor total reduced physiological cross-sectional area exhibited significant (P < 0.05) interspecific differences, thus emphasizing the importance of fine-tuning musculoskeletal analyses by the data collected here. The results generally support those previously published for quadriceps femoris and triceps surae of the hind limb in these species (Anapol and Barry [1996] Am. J. Phys. Anthropol. 99:429-447). The fiber architecture of the semiterrestrial vervets is largely suited for higher velocity while running on the ground. By contrast, the architectural configuration of red-tailed monkeys implies relatively isometric muscle contraction and passive storage of elastic strain energy for exploitation of the compliant canopy, where substrate components are situated beneath the sagittal plane of the animal. With respect to relative distribution of maximum potential force output among muscles of either shoulder or arm groups in these otherwise hind limb-dominated quadrupedal primates, statistically significant interspecific differences are best interpreted in light of braking, climbing, and, for vervets, the transition between ground and canopy.The interspecific differences shown here for the intrinsic muscles of the shoulder and arm underscore the significance of intramuscular morphology in reconciling structure and function with regard to locomotor behavior. Its analysis and interpretation lend support to consideration of "semiterrestrial" as a bona fide locomotor category uniquely different from what is practiced by dedicated arboreal and terrestrial quadrupeds that occasionally visit the habitat of one another. Data from a more committed terrestrial species would clarify this enigma.  相似文献   

6.
The populations of fiber types in hindlimb muscles of the tree shrew (Tupaia glis), lesser bushbaby (Galago senegalensis), and the slow loris (Nycticebus coucang) were described and an attempt was made to correlate populations of fiber types and locomotor patterns. Muscle fibers were assigned to one of the following groups: fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG), and slow-twitch oxidase (SO). Histochemical techniques for the demonstration of alkaline- and acid-stable ATPase, succinic dehydrogenase, and mitochondrial alpha-glycerophosphate dehydrogenase were used in the classification of muscle fibers. Results indicated that the FG fiber type is the predominant fiber type in muscles used for jumping, the FOG fiber type is predominant in muscles used for running, and the SO fiber type occurs in high percentages in postural muscles. The SO fiber was also the most common fiber in muscles of the slow loris-a species that exhibits a slow, deliberate, sustained locomotor pattern. Intramuscular regional variations in populations were seen in some larger muscles of the tree shrew, but not in the lesser bushbaby and slow loris. Our results did not support the contentions of others that analogous muscles in different species have similar populations of fiber types.  相似文献   

7.
The aim of this study was to determine the relative contributions of the deltoid and rotator cuff muscles to glenohumeral joint stability during arm abduction. A three-dimensional model of the upper limb was used to calculate the muscle and joint-contact forces at the shoulder for abduction in the scapular plane. The joints of the shoulder girdle-sternoclavicular joint, acromioclavicular joint, and glenohumeral joint-were each represented as an ideal three degree-of-freedom ball-and-socket joint. The articulation between the scapula and thorax was modeled using two kinematic constraints. Eighteen muscle bundles were used to represent the lines of action of 11 muscle groups spanning the glenohumeral joint. The three-dimensional positions of the clavicle, scapula, and humerus during abduction were measured using intracortical bone pins implanted into one subject. The measured bone positions were inputted into the model, and an optimization problem was solved to calculate the forces developed by the shoulder muscles for abduction in the scapular plane. The model calculations showed that the rotator cuff muscles (specifically, supraspinatus, subscapularis, and infraspinatus) by virtue of their lines of action are perfectly positioned to apply compressive load across the glenohumeral joint, and that these muscles contribute most significantly to shoulder joint stability during abduction. The middle deltoid provides most of the compressive force acting between the humeral head and the glenoid, but this muscle also creates most of the shear, and so its contribution to joint stability is less than that of any of the rotator cuff muscles.  相似文献   

8.
Summary Detailed studies have been made on the distribution of several enzymes in the muscle spindles of the hand and foot interosseous muscles and M. longissimus dorsi of the rhesus monkey as well as in those of the hand interosseous muscles of the squirrel monkey. The intrafusal muscle fibers (IMF) of the rhesus monkey can be classified into two types by the reaction intensity at the polar regions for adenosine triphosphatases and by the enzymes concerning the carbohydrate metabolism except glucose-6-phosphate dehydrogenase, while the extrafusal muscle fibers (EMF) show three types of reactions for the enzymes of the Embden-Meyerhof pathway and the tricarboxylic acid (TCA) cycle. The IMF and EMF of the squirrel monkey are more variable than those of the rhesus monkey for the glycogen breakdown enzyme. It is possible that the small IMF are more capable of energy production through the TCA cycle than the large IMF and the EMF in both species. The positive cholinesterases reactions are found around the polar regions of the IMF, while only the rim of the equator of the IMF shows monoamine oxidase activity. The pericapsular epithelial cells of the muscle spindle seem to be metabolically similar to the perineural epithelial cells.Visiting scientist from the Department of Anatomy, Tokyo Medical and Dental University, Tokyo, Japan. T. R. Shanthaveerappa in previous publications.  相似文献   

9.
The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior–inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.  相似文献   

10.
Abnormally enlarged muscle fiber cells of ring form were incidentally detected in transverse sections of muscles of the common squirrel monkey during microscopic investigation of the composition of muscle fibers. Longitudinal sections showed slender capsule-like cysts in the sarcoplasm. Detailed examination revealed these cysts to be those ofSarcocystis. Among the three types of muscle fiber cells that compose the skeletal muscle, staining with Sudan black B revealed that this parasite selectively infested type II white fibers with a large diameter and a high glycogen content.  相似文献   

11.
Articular injuries in athletic horses are associated with large forces from ground impact and from muscular contraction. To accurately and noninvasively predict muscle and joint contact forces, a detailed model of musculoskeletal geometry and muscle architecture is required. Moreover, muscle architectural data can increase our understanding of the relationship between muscle structure and function in the equine distal forelimb. Muscle architectural data were collected from seven limbs obtained from five thoroughbred and thoroughbred-cross horses. Muscle belly rest length, tendon rest length, muscle volume, muscle fiber length, and pennation angle were measured for nine distal forelimb muscles. Physiological cross-sectional area (PCSA) was determined from muscle volume and muscle fiber length. The superficial and deep digital flexor muscles displayed markedly different muscle volumes (227 and 656 cm3, respectively), but their PCSAs were very similar due to a significant difference in muscle fiber length (i.e., the superficial digital flexor muscle had very short fibers, while those of the deep digital flexor muscle were relatively long). The ulnaris lateralis and flexor carpi ulnaris muscles had short fibers (17.4 and 18.3 mm, respectively). These actuators were strong (peak isometric force, Fmax=5,814 and 4,017 N, respectively) and stiff (tendon rest length to muscle fiber length, LT:LMF=5.3 and 2.1, respectively), and are probably well adapted to stabilizing the carpus during the stance phase of gait. In contrast, the flexor carpi radialis muscle displayed long fibers (89.7 mm), low peak isometric force (Fmax=555 N), and high stiffness (LT:LMF=1.6). Due to its long fibers and low Fmax, flexor carpi radialis appears to be better adapted to flexion and extension of the limb during the swing phase of gait than to stabilization of the carpus during stance. Including muscle architectural parameters in a musculoskeletal model of the equine distal forelimb may lead to more realistic estimates not only of the magnitudes of muscle forces, but also of the distribution of forces among the muscles crossing any given joint.  相似文献   

12.
Studies have shown an increased muscle activation at the opposite passive side during unilateral contractions. The purpose of the present study was to examine the influence of pain on muscle activation in the passive shoulder during unilateral shoulder abduction. Ten patients with unilateral rotator tendinosis of the shoulder and nine healthy controls performed unilateral maximal voluntary contractions (MVC) and sustained submaximal contractions with and without subacromial injections of local anaesthetics of the afflicted shoulder. Muscle activation was recorded by electromyography (EMG) from the trapezius, deltoid, infraspinatus and supraspinatus muscles in both shoulders. During MVCs, the EMG amplitude from muscles of the passive afflicted side was not different in patients and controls, and was not influenced by pain alterations. In contrast, the EMG amplitude from the muscles of the passive unafflicted side was lower in the patients and increased after pain reduction. During the sustained submaximal contraction the EMG amplitude increased gradually in the passive shoulder to 15-30% of the EMG amplitude observed during MVC. This response was not influenced by differences in pain. We conclude that muscle activation of the passive shoulder was closely related to the activation of the contracting muscles and thus related to central motor drive, and not directly influenced by changes in pain.  相似文献   

13.
Male frogs use their forelimb flexor muscles to clasp females during the mating behavior known as amplexus. We investigated the effects of testosterone on a principal forelimb flexor, the flexor carpi radialis muscle (FCR), using morphological and histochemical techniques. Male Xenopus laevis were surgically manipulated to produce high or low levels of circulating testosterone for an 8-week period. After this treatment, measurement of fibers in muscle cross-sections revealed that average fiber size was positively correlated with testosterone level. This effect was not the same for all muscle fibers, however. Fibers in the shoulder region were more sensitive to testosterone than fibers in other regions of the muscle. Histochemical staining of cross-sections showed that the patterns of staining for myosin ATPase or succinic dehydrogenase (SDH) were not influenced by testosterone levels, but total SDH activity was increased by testosterone treatment. When sensitivity to testosterone was correlated with ATPase activity, fibers with high ATPase activity were found to be more sensitive to testosterone than fibers with low activity, regardless of position within the muscle. Most fibers with high ATPase activity were located in the shoulder region of the muscle. These fibers are innervated by different motor axons than are fibers in the elbow region of the muscle, and contractions of shoulder (but not elbow) region fibers, elicited by stimulation of motor axons, are slowed by testosterone treatment (Regnier and Herrera, 1993, J. Physiol. 461:565–581). © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Momentary fatigue is an important variable in resistance training periodization programs. Although several studies have examined neuromuscular activity during single repetitions of resistance training, information is lacking in regard to neuromuscular fatigue indices throughout a full resistance training bout. The purpose of this study was to evaluate muscle activity during a shoulder resistance training bout with 15 repetitions maximum (RM) loadings in novice individuals. Twelve healthy sedentary women (age = 27-58 years; weight = 54-85 kg; height = 160-178 cm) were recruited for this study. Normalized electromyographic (nEMG) activity and median power frequency (MPF) of the upper, medial, and lower trapezius; the medial deltoid, infraspinatus, and serratus anterior was measured during 3 sets of 15RM during the exercises front raise, reverse flyes, shrugs, and lateral raise. For the majority of exercises, nEMG activity was high (>60% of maximal isometric contractions). From the first to the last repetition of each set nEMG-averaged for all muscles-increased 10. 0 ± 0.4% (p < 0.05) and MPF decreased -7.7 ± 0.5 Hz (p < 0.05). By contrast, nEMG activity and MPF were unchanged from the first to the third set (averaged for all muscles: 38.1 ± 23.6 vs. 47.6 ± 28.8% and 88.4 ± 21.3 vs. 82.1 ± 18.1 Hz, respectively). In conclusion, during a shoulder resistance training bout in novice individuals using 15RM loading muscle activity of the upper, medial, and lower trapezius, the medial deltoid, infraspinatus, and serratus anterior increased, and MPF decreased within each set-indicating momentary neuromuscular fatigue. By contrast, no such change was observed between the 3 sets. This indicates that momentary neuromuscular fatigue in shoulder resistance training is induced more efficiently within a set than between sets.  相似文献   

15.
In this paper the concept of a three-dimensional biomechanical model of the human shoulder is introduced. This model is used to analyze static load sharing between the muscles, the bones and the ligaments. The model consists of all shoulder structures, which means that different positions and different load situations may be analyzed using the same model. Solutions can be found for the complete range of shoulder motion. However, this article focuses only on elevation in the scapular plane and on forces in structures attached to the humerus. The intention is to expand the model in future studies to also involve the forces acting on the other shoulder bones: the scapula and the clavicle. The musculoskeletal forces in the shoulder complex are predicted utilizing the optimization technique with the sum of squared muscle stresses as an objective function. Numerical results predict that among the muscles crossing the glenohumeral joint parts of the deltoideus, the infraspinatus, the supraspinatus, the subscapularis, the pectoralis major, the coracobrachialis and the biceps are the muscles most activated during this sort of abduction. Muscle-force levels reached values of 150 N when the hand load was 1 kg. The results from the model seem to be qualitatively accurate, but it is concluded that in the future development of the model the direction of the contact force in the glenohumeral joint must be constrained.  相似文献   

16.
Recent studies have provided some insights into Leishsmania (Leishmania) amazonensis muscular infection in dogs, although, muscular disease due to leishmaniasis has been poorly documented. The aim of our study was to evaluate involvement of Leishmania in muscular infection of two distinct mouse strains (BALB/c and C3H.He), with different genetic backgrounds. BALB/c mice, susceptible to Leishmania infection, showed, at the beginning of infection, a great number of infected macrophages among muscle fibers; however, in C3H.He resistant mice, muscle fibers were less damaged than in BALB/c mice, but some parasitized macrophages could be seen among them. A follow up of the infection showed an intense inflammatory infiltrate mainly composed of infected macrophages in BALB/c muscles and the presence of amastigotes within muscle fibers; while C3H.He mice exhibited a moderate inflammatory infiltrate among skeletal muscle fibers and an absence of amastigotes. Total destruction of muscles was observed in BALB/c mice in the late phase of infection (day 90) while C3H.He mice showed a process of muscle repair. We concluded that: (1) the muscles of BALB/c mice were more affected by leishmaniasis than those of C3/H.He mice; (2) Leishmania amastigotes are capable of infecting muscular fibers, as observed in BALB/c mice; (3) as inflammatory infiltrate is less intense in C3H.He mice these animals are capable of restoring muscular fibers.  相似文献   

17.
18.
Common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus) (Callitrichidae, Primates) share a broadly similar diet of fruits, insects, and tree exudates. Common marmosets, however, differ from tamarins by actively gouging trees with their anterior teeth to elicit tree exudate flow. During tree gouging, marmosets produce relatively large jaw gapes, but do not necessarily produce relatively large bite forces at the anterior teeth. We compared the fiber architecture of the masseter muscle in tree-gouging Callithrix jacchus (n = 10) to nongouging Saguinus oedipus (n = 8) to determine whether the marmoset masseter facilitates producing these large gapes during tree gouging. We predict that the marmoset masseter has relatively longer fibers and, hence, greater potential muscle excursion (i.e., a greater range of motion through increased muscle stretch). Conversely, because of the expected trade-off between excursion and force production in muscle architecture, we predict that the cotton-top tamarin masseter has more pinnate fibers and increased physiological cross-sectional area (PCSA) as compared to common marmosets. Likewise, the S. oedipus masseter is predicted to have a greater proportion of tendon relative to muscle fiber as compared to the common marmoset masseter. Common marmosets have absolutely and relatively longer masseter fibers than cotton-top tamarins. Given that fiber length is directly proportional to muscle excursion and by extension contraction velocity, this result suggests that marmosets have masseters designed for relatively greater stretching and, hence, larger gapes. Conversely, the cotton-top tamarin masseter has a greater angle of pinnation (but not significantly so), larger PCSA, and higher proportion of tendon. The significantly larger PCSA in the tamarin masseter suggests that their masseter has relatively greater force production capabilities as compared to marmosets. Collectively, these results suggest that the fiber architecture of the common marmoset masseter is part of a suite of features of the masticatory apparatus that facilitates the production of relatively large gapes during tree gouging.  相似文献   

19.
The present study examined the fiber-type proportions of 22 muscles spanning the shoulder and/or elbow joints of three Macaca mulatta. Fibers were classified as one of three types: fast-glycolytic (FG), fast-oxidative-glycolytic (FOG), or slow-oxidative (SO). In most muscles, the FG fibers predominated, but proportions ranged from 25-67% in different muscles. SO fibers were less abundant except in a few deep, small muscles where they comprised as much as 56% of the fibers. Cross-sectional area (CSA) of the three fiber types was measured in six different muscles. FG fibers tended to be the largest, whereas SO fibers were the smallest. While fiber-type size was not always consistent between muscles, the relative size of FG fibers was generally larger than FOG and SO fibers within the same muscle. When fiber CSA was taken into consideration, FG fibers were found to comprise over 50% of the muscle's CSA in almost all muscles.  相似文献   

20.
Tissue overloading is a major contributor to shoulder musculoskeletal injuries. Previous studies attempted to use regression-based methods to predict muscle activities from shoulder kinematics and shoulder kinetics. While a regression-based method can address co-contraction of the antagonist muscles as opposed to the optimization method, most of these regression models were based on limited shoulder postures. The purpose of this study was to develop a set of regression equations to predict the 10th percentile, the median, and the 90th percentile of normalized electromyography (nEMG) activities from shoulder postures and net shoulder moments. Forty participants generated various 3-D shoulder moments at 96 static postures. The nEMG of 16 shoulder muscles was measured and the 3-D net shoulder moment was calculated using a static biomechanical model. A stepwise regression was used to derive the regression equations. The results indicated the measured range of the 3-D shoulder moment in this study was similar to those observed during work requiring light physical capacity. The r2 of all the regression equations ranged between 0.228 and 0.818. For the median of the nEMG, the average r2 among all 16 muscles was 0.645, and the five muscles with the greatest r2 were the three deltoids, supraspinatus, and infraspinatus. The results can be used by practitioners to estimate the range of the shoulder muscle activities given a specific arm posture and net shoulder moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号