首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zhang QX  Pei DS  Guan QH  Sun YF  Liu XM  Zhang GY 《Biochemistry》2007,46(13):4006-4016
Our previous study indicates that global ischemia facilitates the assembly of the GluR6.PSD-95.MLK3 signaling module, which in turn activated MLK3, leading to exacerbated ischemic neuron death. In addition, JIP1, functioning as a scaffold protein, could couple MLK3-MKK7-JNK to form a specific signaling module and facilitate the activation of the JNK signal pathway. However, the organization, regulation, and function between the two signaling modules and the effects they have on MLK3 activation remain incompletely understood. Here, we show that JIP1 maintains MLK3 in an inactive and monomeric state; once activated, MLK3 binds to PSD-95 and then dimerizes and autophosphorylates. In addition, a GluR6 C-terminus-containing peptide (Tat-GluR6-9c) and antisense oligonucleotides (AS-ODNs) against PSD-95 inhibit the integration of PSD-95 and MLK3 and the dimerization of MLK3, facilitate the interaction of JIP1 and MLK3, and, consequently, perform neuroprotection on neuron death. However, AS-ODNs against JIP1 play a negative role compared to that mentioned above. The findings show that the crosstalk occurs between PSD-95 and the JIP1-mediated signaling module, which may be involved in brain ischemic injury and contribute to the regulation of MLK3 activation. Thus, specific blockade of PSD-95-MLK3 coupling may reduce the extent of ischemia-reperfusion-induced neuronal cell death.  相似文献   

3.
Previous studies indicate that cerebral ischemia breaks the dynamic balance between excitatory and inhibitory inputs. The neural excitotoxicity induced by ionotropic glutamate receptors gain the upper hand during ischemia-reperfusion. In this paper, we investigate whether GluR5 (glutamate receptor 5)-containing kainate receptor activation could lead to a neuroprotective effect against ischemic brain injury and the related mechanism. The results showed that (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a selective GluR5 agonist, could suppress Src tyrosine phosphorylation and interactions among N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A), postsynaptic density protein 95 (PSD-95), and Src and then decrease NMDA receptor activation through attenuating tyrosine phosphorylation of NR2A and NR2B. More importantly, ATPA had a neuroprotective effect against ischemia-reperfusion-induced neuronal cell death in vivo. However, four separate drugs were found to abolish the effects of ATPA. These were selective GluR5 antagonist NS3763; GluR5 antisense oligodeoxynucleotides; CdCl(2), a broad spectrum blocker of voltage-gated calcium channels; and bicuculline, an antagonist of gamma-aminobutyric acid A (GABA(A)) receptor. GABA(A) receptor agonist muscimol could attenuate Src activation and interactions among NR2A, PSD-95 and Src, resulting the suppression of NMDA receptor tyrosine phosphorylation. Moreover, patch clamp recording proved that the activated GABA(A) receptor could inhibit NMDA receptor-mediated whole-cell currents. Taken together, the results suggest that during ischemia-reperfusion, activated GluR5 may facilitate Ca(2+)-dependent GABA release from interneurons. The released GABA can activate postsynaptic GABA(A) receptors, which then attenuates NMDA receptor tyrosine phosphorylation through inhibiting Src activation and disassembling the signaling module NR2A-PSD-95-Src. The final result of this process is that the pyramidal neurons are rescued from hyperexcitability.  相似文献   

4.
5.
Glutamate receptor 6 (GluR6) is well documented to play a pivotal role in ischemic brain injury, which is mediated by the GluR6·PSD95·MLK3 signaling module and subsequent c-Jun N-terminal kinase (JNK) activation. Our recent studies show that GluR6 is S-nitrosylated in the early stages of ischemia-reperfusion. NO (Nitric Oxide) is mainly generated from neuronal nitric oxide synthase (nNOS) in cerebral neurons during the early stages of reperfusion. Here, the effect of nNOS downregulation on GluR6 S-nitrosylation and GluR6-mediated signaling was investigated in cerebral ischemia and reperfusion. Administration of nNOS oligonucleotides confirmed that GluR6 nitrosylation is induced by nNOS-derived endogenous NO and further activates the GluR6·PSD95·MLK3 signaling module and JNK signaling pathway. Moreover, this study revealed for the first time that nNOS can bind with GluR6 during ischemic reperfusion, and PSD95 is involved in this interaction. In summary, our results suggest that nNOS binds with GluR6 via PSD95 and then produces endogenous NO to S-nitrosylate GluR6 in cerebral ischemia-reperfusion, which provides a new approach for stroke therapy.  相似文献   

6.
Fasudil hydrochloride (FH), a Rho kinase (ROCK) inhibitor, has been reported to prevent cerebral ischemia in vivo from increasing cerebral blood flow and inhibiting inflammatory responses. However, it is uncertain by what mechanism a ROCK inhibitor can directly protect neurons against ischemic damage. The present study was designed to evaluate whether FH decreased the increased phosphorylation of glutamate receptor 6 (GluR6) and its downstream in GluR6–MLK3–JNKs signal transduction pathway following global transient cerebral ischemia, as a result of protecting against neuronal apoptosis and death. Transient cerebral ischemia was induced by the Pulsinelli–Brierley four-vessel occlusion method. FH (15 mg/kg) was administered to rats by intraperitoneal injection 30 min before ischemia. The phosphorylation and protein expression of GluR6 at 6 h during reperfusion were detected using immunoprecipitation and immunoblotting analysis. The phosphorylation and protein expression of Mixed lineage kinase 3 (MLK3) at ischemia/reperfusion (I/R) 6 h and c-Jun N-terminal kinase (JNK) at I/R 3 d were detected using immunoblotting analysis, respectively. The same method was used to detect the expression of caspase-3 at I/R 6 h. Furthermore, we also use TUNEL staining and Cresyl violet staining to examine the survival neurons in rat hippocampal CA1 regions after 3 and 5 d reperfusion, respectively. Our study indicated that FH could inhibit the increased phosphorylation of GluR6 and MLK3 and the expression of caspase-3 at peaked 6 h of reperfusion and the phosphorylation of JNK (3 d) (p < 0.5). The results of TUNEL staining and Cresyl violet showed that the number of surviving pyramidal neurons in rats hippocampal CA1 subfield increased markedly in FH-treated rats compared with ischemic groups after 3 or 5 d of reperfusion following ischemia (p < 0.5). These results suggested that FH, as a ROCK inhibitor, may be partly responsible for its protective effects against such damage by taking part in GluR6-MLK3-JNKs signaling pathway which modulates ischemic damage. Taken together, this is the first study investigating Rho and ROCK as the upstream of GluR6 taking part in GluR6–MLK3–JNKs signal transduction pathway following cerebral ischemia.  相似文献   

7.
In the anterior cingulate cortex (ACC), GluR5-containing kainate receptor mediated the small portion of excitatory postsynaptic current. However, little is known about its role in modulation of neurotransmitter release in this brain region. In the present study, we address this question by using selective GluR5 agonist and antagonist, as well as GluR5(-/-) mice. Our results showed that activation of GluR5 induced action potential-dependent GABA release, which is also required for the activation of voltage-dependent calcium channel and Ca(2+) influx. The effect of GluR5 activation is selective to the GABAergic, but not glutamatergic synaptic transmission. Endogenous activation of GluR5 also enhanced GABA release to ACC pyramidal neurons and the corresponding postsynaptic tonic GABA current. Our results suggest the somatodendritic, but not presynaptic GluR5, in modulation of GABA release. The endogenous GluR5 activation and the subsequent tonic GABA current may play an inhibitory role in ACC-related brain functions.  相似文献   

8.
The excitatory glutamatergic neurons in the hippocampus are modulated by inhibitory GABA-releasing interneurons. The neuromodulator adenosine is known to inhibit the presynaptic release of neurotransmitters and to hyperpolarize postsynaptic neurons in the hippocampus, which would imply that it is an endogenous protective agent against cerebral ischemia and excitotoxic neuronal damage. Interactions of the GABAergic and adenosinergic systems in regulating neuronal excitability in the hippocampus is of crucial importance, particularly under cell-damaging conditions. We now characterized the effects of adenosine receptor agonists and antagonists on the release of preloaded [3H]GABA from hippocampal slices prepared from adult (3-month-old) mice, using a superfusion system. The effects were tested both under normal conditions and in ischemia induced by omitting glucose and oxygen from the superfusion medium. Basal and K+-evoked GABA release in the hippocampus were depressed by adenosinergic compounds. Under normal conditions activation of both adenosine A1 and A2A receptors by the agonists R(-)N6-(2-phenylisopropyl)adenosine and CGS 21680 inhibited the K+-evoked release, which effects were blocked by their specific antagonists, 8-cyclopentyl-1,3-dipropyl-xanthine and 3,7-dimethyl-1-propargylxanthine, respectively. Under ischemic conditions the release of both GABA and adenosine is markedly enhanced. The above receptor agonists then depressed both the basal and K+-evoked GABA release, only the action of A2A receptors being however receptor-mediated. The demonstrated depression of GABA release by adenosine in the hippocampus could be deleterious to neurons and contribute to excitotoxicity.  相似文献   

9.
Cellular prion protein (PrP(C)) is a glycosyl-phosphatidylinositol-anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrP(SC)) induces transmissible spongiform encephalopathies. In contrast, PrP(C) has a number of physiological functions in several neural processes. Several lines of evidence implicate PrP(C) in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrP(C) has been implicated in the inhibition of N-methyl-d-aspartic acid (NMDA)-mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnp(o/o)Jnk3(o/o) mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrP(C)-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrP(C) with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6-PSD-95 interaction after KA injections was favored by the absence of PrP(C). Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrP(C) against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.  相似文献   

10.
Exogenous and endogenous cannabinoids play an important role in modulating the release of neurotransmitters in hippocampal excitatory and inhibitory networks, thus having profound effect on higher cognitive and emotional functions such as learning and memory. In this study we have studied the effect of cannabinoid agonists on the potassium depolarization-evoked [(3)H]GABA release from hippocampal synaptosomes in the wild-type (WT) and cannabinoid 1 receptor (CB(1)R)-null mutant mice. All tested cannabinoid agonists (WIN55,212-2, CP55,940, HU-210, 2-arachidonoyl-glycerol, 2-AG; delta-9-tetra-hydrocannabinol, THC) inhibited [(3)H]GABA release in WT mice with the following rank order of agonist potency: HU-210>CP55,490>WIN55,212-2>2-AG>THC. By contrast, 2-AG and THC displayed the greatest efficacy eliciting almost complete inhibition of evoked [(3)H]GABA efflux, whereas the maximal inhibition obtained by HU-210, CP55,490, and WIN55,212-2 were less, eliciting not more than 40% inhibition. The inhibitory effect of WIN55,212-2, THC and 2-AG on evoked [(3)H]GABA efflux was antagonized by the CB(1) receptor inverse agonist AM251 (0.5 μM) in the WT mice. In the CB(1)R knockout mice the inhibitory effects of all three agonists were attenuated. In these mice, AM251 did not antagonize, but further reduced the [(3)H]GABA release in the presence of the synthetic agonist WIN55,212-2. By contrast, the concentration-dependent inhibitory effects of THC and 2-AG were partially antagonized by AM251 in the absence of CB(1) receptors. Finally, the inhibition of evoked [(3)H]GABA efflux by THC and 2-AG was also partially attenuated by AM630 (1 μM), the CB(2) receptor-selective antagonist, both in WT and CB(1) knockout mice. Our data prove the involvement of CB(1) receptors in the effect of exo- and endocannabinoids on GABA efflux from hippocampal nerve terminals. In addition, in the effect of the exocannabinoid THC and the endocannabinoid 2-AG, non-CB(1), probably CB(2)-like receptors are also involved.  相似文献   

11.
The enteric muscle contraction (EMC) is the last step of the defecation behavior which occurs every 50 s in Caenorhabditis elegans. This EMC is regulated by intestinal and anal depressor muscles, which are innervated by GABA motor neurons. Our data show that calcineurin (tax-6) is expressed in intestinal muscle and anal depressor muscle, and the gain-of-function mutant of calcineurin, tax-6(jh107), shows defects in enteric muscle contractions. In addition, the intracellular region of EXP-1, an excitatory GABA receptor, specifically binds to calcineurin A. This interaction between TAX-6 and EXP-1 appears to be independent of both calcium and CNB, which is the calcium-binding regulatory subunit. Genetic evidence of epistasis between cnb-1(jh103) and exp-1(sa6) suggests that calcineurin functions as a negative regulator of excitatory GABA receptor in GABA signaling in C.elegans.  相似文献   

12.
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance—as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer’s disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)—leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.  相似文献   

13.
GABAergic transmission in the amygdala modulates the expression of anxiety. Understanding the interplay between GABAergic transmission and excitatory circuits in the amygdala is, therefore, critical for understanding the neurobiological basis of anxiety. Here, we used a multi-disciplinary approach to demonstrate that GluR5-containing kainate receptors regulate local inhibitory circuits, modulate the excitatory transmission from the basolateral amygdala to the central amygdala, and control behavioral anxiety. Genetic deletion of GluR5 or local injection of a GluR5 antagonist into the basolateral amygdala increases anxiety-like behavior. Activation of GluR5 selectively depolarized inhibitory neurons, thereby increasing GABA release and contributing to tonic GABA current in the basolateral amygdala. The enhanced GABAergic transmission leads to reduced excitatory inputs in the central amygdala. Our results suggest that GluR5 is a key regulator of inhibitory circuits in the amygdala and highlight the potential use of GluR5-specific drugs in the treatment of pathological anxiety.  相似文献   

14.
A kainate receptor increases the efficacy of GABAergic synapses   总被引:5,自引:0,他引:5  
Jiang L  Xu J  Nedergaard M  Kang J 《Neuron》2001,30(2):503-513
Brain functions are based on the dynamic interaction of excitatory and inhibitory inputs. Spillover of glutamate from excitatory synapses may diffuse to and modulate nearby inhibitory synapses. By recording unitary inhibitory postsynaptic currents (uIPSCs) from cell pairs in CA1 of the hippocampus, we demonstrated that low concentrations of Kainate receptor (KAR) agonists increased the success rate (P(s)) of uIPSCs, whereas high concentrations of KAR agonists depressed GABAergic synapses. Ambient glutamate released by basal activities or stimulation of the stratum radiatum increases the efficacy of GABAergic synapses by activating presynaptic KARs, which facilitate Ca(2+)-dependent GABA release. The results suggest that glutamate released from excitatory synapses may also function as an intermediary between excitatory and inhibitory synapses to protect overexcitation of local circuits.  相似文献   

15.
Previously, we have shown that the phosphoinositide-3-kinase (PI3K) mediated acute (24 h) post-conditioning neuroprotection induced by propofol. We also found that propofol post-conditioning produced long term neuroprotection and inhibited the internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit up to 28 days post middle cerebral artery occlusion (MCAO). However, the relationship between PI3K with AMPA receptor GluR2 subunit trafficking in propofol post-conditioning has never been explored. Here we showed that propofol post-conditioning promoted the binding of PI3K to the C-terminal of AMPA receptor GluR2 subunit and formed a complex within 1 day after transient MCAO. Interestingly, the enhanced activity of PI3K was observed in the hippocampus of post-conditioning rats at day 1 post ischemia, whereas the decrease of AMPA receptor GluR2 subunit internalization was found up to 28 days in the same group. Administration of PI3K selective antagonist wortmannin inhibited the improvement of spatial learning memory and the increase of neurogenesis in the dentate gyrus up to 28 days post ischemia. It also reversed the inhibition of AMPA receptor GluR2 internalization induced by propofol post-conditioning. Together, our data indicated the critical role of PI3K in regulating the long term neuroprotection induced by propofol post-conditioning. Moreover, this role was established by first day activation of PI3K and formation of PI3K-AMPA receptor GluR2 complex, thus stabilized the structure of postsnaptic AMPA receptor and inhibited the internalization of GluR2 subunit during the early stage of propofol post-conditioning.  相似文献   

16.
gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia   总被引:6,自引:0,他引:6  
In this review, we present evidence for the role of gamma-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABA(A) receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl(-) gradient, reduction in ATP, increase in intracellular Ca(2+), generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABA(A) receptor activity with agonists and allosteric modulators. Some of these strategies are quite efficacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for specific types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.  相似文献   

17.
Stargazer mice fail to express the gamma2 isoform of transmembrane alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor regulatory proteins that has been shown to be absolutely required for the trafficking and synaptic targeting of excitatory AMPA receptors in adult murine cerebellar granule cells. Here we show that 30 +/- 6% fewer inhibitory gamma-aminobutyric acid, type A (GABA(A)), receptors were expressed in adult stargazer cerebellum compared with controls because of a specific loss of GABA(A) receptor expression in the cerebellar granule cell layer. Radioligand binding assays allied to in situ immunogold-EM analysis and furosemide-sensitive tonic current estimates revealed that expression of the extrasynaptic (alpha6betaxdelta) alpha6-containing GABA(A) receptor were markedly and selectively reduced in stargazer. These observations were compatible with a marked reduction in expression of GABA(A) receptor alpha6, delta (mature cerebellar granule cell-specific proteins), and beta3 subunit expression in stargazer. The subunit composition of the residual alpha6-containing GABA(A) receptors was unaffected by the stargazer mutation. However, we did find evidence of an approximately 4-fold up-regulation of alpha1betadelta receptors that may compensate for the loss of alpha6-containing GABA(A) receptors. PCR analysis identified a dramatic reduction in the steady-state level of alpha6 mRNA, compatible with alpha6 being the primary target of the stargazer mutation-mediated GABA(A) receptor abnormalities. We propose that some aspects of assembly, trafficking, targeting, and/or expression of extrasynaptic alpha6-containing GABA(A) receptors in cerebellar granule cells are selectively regulated by AMPA receptor-mediated signaling.  相似文献   

18.

Abstact

Background

Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue.

Methods

In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated.

Results

Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABA, GABA, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance.

Conclusions

Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.  相似文献   

19.
Deposition of fibrillar aggregates of the beta-amyloid peptide (Abeta) is a key pathologic feature during the early stage of Alzheimer's disease. The initial neuronal responses to Abeta in cortical circuits and the regulation of Abeta-induced signaling remain unclear. In this study, we found that exposure of cortical slices to Abeta(1-42) or Abeta(25-35) induced a marked increase in the activation of protein kinase C (PKC) and Ca(2+)/calmodulin-dependent kinase II (CaMKII), two enzymes critically involved in a variety of cellular functions. Activation of M1 muscarinic receptors, but not nicotinic receptors, significantly inhibited the Abeta activation of PKC and CaMKII. Increasing inhibitory transmission mimicked the M1 effect on Abeta, whereas blocking GABA(A) receptors eliminated the M1 action. Moreover, electrophysiological evidence shows that application of Abeta to cortical slices induced action potential firing and enhanced excitatory postsynaptic currents, whereas muscarinic agonists potently increased inhibitory postsynaptic currents. These results suggest that Abeta activates PKC and CaMKII through enhancing excitatory activity in glutamatergic synaptic networks. Activation of M1 receptors inhibits Abeta signaling by enhancing the counteracting GABA(ergic) inhibitory transmission. Thus the muscarinic reversal of the Abeta-induced biochemical and physiological changes provides a potential mechanism for the treatment of Alzheimer's disease with cholinergic enhancers.  相似文献   

20.
JNK signaling pathway is activated and involved in the selective neuronal death in the hippocampal CA1 subfield following cerebral ischemia. However, little is known about upstream partner controlling the pathway. Here we reported that ischemia/reperfusion significantly elevated Cdc42 activity, enhanced assembly of the Cdc42-MLK3 complex and activation of JNK pathway. Most importantly, knock-down endogenous Cdc42 selectively suppressed the MLK3/MKK7/JNK3 cascade, and subsequently blocked the phosphorylation of c-Jun and FasL expression. Meanwhile, Bcl-2 was inactivated and the release of cytochrome c was diminished. These alterations eventually perturbed the caspase-3 activation as well as post-ischemic neuronal cell death. Taken together, our findings strongly suggest that Cdc42 serves as an upstream activator and modulates JNK-mediated apoptosis machinery in vivo, which ultimately results in neuronal apoptosis via nuclear and non-nuclear pathways. Thus, Cdc42 may be a potential therapeutic target in ischemic brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号