首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder of human, mouse (beige) and other mammalian species. The same genetic defect was found to result in the disease in all species identified, permitting a positional cloning approach using the mouse model beige to identify the responsible gene. The CHS gene was cloned and mutations identified in affected species. This review discusses the clinical features of CHS contrasting features seen in similar syndromes. The possible functions of the protein encoded by the CHS/beige gene are discussed, along with the alterations in cellular physiology seen in mutant cells.  相似文献   

2.
We have isolated and characterized temperature-sensitive endocytosis mutants in Dictyostelium discoideum. Dictyostelium is an attractive model for genetic studies of endocytosis because of its high rates of endocytosis, its reliance on endocytosis for nutrient uptake, and tractable molecular genetics. Endocytosis-defective mutants were isolated by a fluorescence-activated cell sorting (FACS) as cells unable to take up a fluorescent marker. One temperature-sensitive mutant (indy1) was characterized in detail and found to exhibit a complete block in fluid phase endocytosis at the restrictive temperature, but normal rates of endocytosis at the permissive temperature. Likewise, a potential cell surface receptor that was rapidly internalized in wild-type cells and indy1 cells at the permissive temperature was poorly internalized in indy1 under restrictive conditions. Growth was also completely arrested at the restrictive temperature. The endocytosis block was rapidly induced upon shift to the restrictive temperature and reversed upon return to normal conditions. Inhibition of endocytosis was also specific, as other membrane-trafficking events such as phagocytosis, secretion of lysosomal enzymes, and contractile vacuole function were unaffected at the restrictive temperature. Because recycling and transport to late endocytic compartments were not affected, the site of the defect's action is probably at an early step in the endocytic pathway. Additionally, indy1 cells were unable to proceed through the normal development program at the restrictive temperature. Given the tight functional and growth phenotypes, the indy1 mutant provides an opportunity to isolate genes responsible for endocytosis in Dictyostelium by complementation cloning.  相似文献   

3.
We have isolated and characterized Dictyostelium discoideum mutants with conditional defects in phagocytosis. Under suspension conditions, the mutants exhibited dramatic reductions in the uptake of bacteria and polystyrene latex beads. The initial binding of these ligands was unaffected, however, indicating that the defect was not in a plasma membrane receptor: Because of the phagocytosis defect, the mutants were unable to grow when cultured in suspensions of heat-killed bacteria. The mutants exhibited normal capacities for fluid phase endocytosis and grew as rapidly as parental (AX4) cells in axenic medium. Both the defects in phagocytosis and growth on bacteria were corrected when the mutant Dictyostelium cells were cultured on solid substrates. Reversion and genetic complementation analysis suggested that the mutant phenotypes were caused by single gene defects. While the precise site of action of the mutations was not established, the mutations are likely to affect an early signaling event because the binding of bacteria to mutant cells in suspension was unable to trigger the localized polymerization of actin filaments required for ingestion; other aspects of actin function appeared normal. This class of conditional phagocytosis mutant should prove to be useful for the expression cloning of the affected gene(s).  相似文献   

4.
Macroautophagy is the major mechanism that eukaryotes use to recycle cellular components during stressful conditions. We have shown previously that the Atg12-Atg5 conjugation system, required for autophagosome formation in yeast, is necessary for Dictyostelium development. A second conjugation reaction, Aut7/Atg8 lipidation with phosphatidylethanolamine, as well as a protein kinase complex and a phosphatidylinositol 3-kinase complex are also required for macroautophagy in yeast. In this study, we characterize mutations in the putative Dictyostelium discoideum orthologues of budding yeast genes that are involved in one of each of these functions, ATG1, ATG6, and ATG8. All three genes are required for macroautophagy in Dictyostelium. Mutant amoebae display reduced survival during nitrogen starvation and reduced protein degradation during development. Mutations in the three genes produce aberrant development with defects of varying severity. As with other Dictyostelium macroautophagy mutants, development of atg1-1, atg6(-), and atg8(-) is more aberrant in plaques on bacterial lawns than on nitrocellulose filters. The most severe defect is observed in the atg1-1 mutant, which does not aggregate on bacterial lawns and arrests as loose mounds on nitrocellulose filters. The atg6(-) and atg8(-) mutants display almost normal development on nitrocellulose filters, producing multi-tipped aggregates that mature into small fruiting bodies. The distribution of a green fluorescent protein fusion of the autophagosome marker, Atg8, is aberrant in both atg1-1 and atg6(-) mutants.  相似文献   

5.
《The Journal of cell biology》1995,131(5):1205-1221
The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in nutrients from the medium, whereas they are almost indistinguishable from wild-type and single mutant strains when grown on a surface. The double mutants are also found to internalize gp126, a 116-kD membrane protein, at a slower rate than either the wild-type or single mutant cells. Ultrastructural analysis reveals that both double mutants possess numerous small vesicles, in contrast to the wild-type or myosin I single mutants that exhibit several large, clear vacuoles. The alterations in fluid and membrane internalization in the suspension- grown double mutants, coupled with the altered vesicular profile, suggest that these cells may be compromised during the early stages of pinocytosis, a process that has been proposed to occur via actin-based cytoskeletal rearrangements. Scanning electron microscopy and rhodamine- phalloidin staining indicates that the myosin I double mutants appear to extend a larger number of actin-filled structures, such as filopodia and crowns, than wild-type cells. Rhodamine-phalloidin staining of the F-actin cytoskeleton of these suspension-grown cells also reveals that the double mutant cells are delayed in the rearrangement of cortical actin-rich structures upon adhesion to a substrate. We propose that myoA, myoB, and myoC play roles in controlling F-actin filled membrane projections that are required for pinosome internalization in suspension.  相似文献   

6.
The actin cytoskeleton is implicated in many cellular processes, such as cell adhesion, locomotion, contraction and cytokinesis, which are central to any development. The extent of polymerization, cross-linking, and bundling of actin is regulated by several actin-binding proteins. Knock-out mutations in these proteins have revealed in many cases only subtle, if any, defects in development, suggesting that the actin system is redundant, with multiple proteins sharing overlapping functions. The apparent redundancy may, however, reflect limitations of available laboratory assays in assessing the developmental role of a given protein. By using a novel assay, which reproduces conditions closer to the natural ones, we have re-examined the effects of disruption of many actin-binding proteins, and show here that deletion of alpha-actinin, interaptin, synexin, 34-kDa actin-bundling protein, and gelation factor affect to varying degrees the efficiency of Dictyostelium cells to complete development and form viable spores. No phenotypic defects were found in hisactophilin or comitin null mutants.  相似文献   

7.
Dictyostelium cells are genetically haploid and therefore easily analyzed for mutant phenotypes. In the past, many tools and molecular markers have been developed for a quantitative and qualitative analysis of the endocytic pathway in these amoebae. This review outlines parallels and discrepancies between mutants in Dictyostelium, the corresponding mammalian cells and the symptoms of human patients affected by lysosomal and trafficking defects. Situations where knowledge from Dictyostelium may potentially help understand human disease and vice versa are also addressed.  相似文献   

8.
Chediak Higashi syndrome (CHS) is a rare, autosomal recessive disorder that affects multiple systems of the body. Patients with CHS exhibit hypopigmentation of the skin, eyes and hair, prolonged bleeding times, easy bruisability, recurrent infections, abnormal NK cell function and peripheral neuropathy. Morbidity results from patients succumbing to frequent bacterial infections or to an "accelerated phase" lymphoproliferation into the major organs of the body. Current treatment for the disorder is bone marrow transplant, which alleviates the immune problems and the accelerated phase, but does not inhibit the development of neurologic disorders that grow increasingly worse with age. There are several animal models of CHS, the beige mouse being the most characterized. Positional cloning and YAC complementation resulted in the identification of the Beige and CHS1/LYST genes. These genes encode a cytosolic protein of 430,000 Da. Sequence analysis identified three conserved regions in the protein: a HEAT repeat motif at the amino-terminus that contains several a helices, a BEACH domain containing the amino acid sequence WIDL, and a WD40 repeat motif, which is described as a protein-protein interaction domain. The presence of the BEACH and WD40 domains defines a family of genes that encode extremely large proteins.  相似文献   

9.
Members of the ATP binding cassette (ABC) protein superfamily actively transport a wide range of substrates across cell and intracellular membranes. Mutations in ABCA3, a member of the ABCA subfamily with unknown function, lead to fatal respiratory distress syndrome (RDS) in the newborn. Using cultured human lung cells, we found that recombinant wild-type hABCA3 localized to membranes of both lysosomes and lamellar bodies, which are the intracellular storage organelles for surfactant. In contrast, hABCA3 with mutations linked to RDS failed to target to lysosomes and remained in the endoplasmic reticulum as unprocessed forms. Treatment of those cells with the chemical chaperone sodium 4-phenylbutyrate could partially restore trafficking of mutant ABCA3 to lamellar body-like structures. Expression of recombinant ABCA3 in non-lung human embryonic kidney 293 cells induced formation of lamellar body-like vesicles that contained lipids. Small interfering RNA knockdown of endogenous hABCA3 in differentiating human fetal lung alveolar type II cells resulted in abnormal, lamellar bodies comparable with those observed in vivo with mutant ABCA3. Silencing of ABCA3 expression also reduced vesicular uptake of surfactant lipids phosphatidylcholine, sphingomyelin, and cholesterol but not phosphatidylethanolamine. We conclude that ABCA3 is required for lysosomal loading of phosphatidylcholine and conversion of lysosomes to lamellar body-like structures.  相似文献   

10.
Wild-type Dictyostelium discoideum cells grow- ing on non-toxic levels of nickel chloride or cobaltous chloride accumulate 2–3.5 times as much nickel and at least 1.5 times as much cobalt as cobB mutants. The cobB trait is dominant, confers unstable cobalt and nickel resistance and is correlated with the presence of up to 50 copies of a linear extrachromosomal DNA, approximately 100?kb in length, derived from linkage group III. Independent cobB mutants can be obtained by selection on medium containing either cobalt or nickel. The amplified DNA can be transferred to wild-type strains by electroporation. Strains with mutations at a second cobalt resistance locus, cobA, accumulate the same amount of cobalt, but more nickel than wild-type strains. Our results are consistent with the cobA mutant phenotype being due to internal sequestration of cobalt, and the cobB mutant phenotype being due to reduced net uptake of cobalt and nickel. Energy-dependent nickel export was detectable in wild-type and cobB mutant strains but its role in heavy metal resistance has not yet been proved.  相似文献   

11.
In Dictyostelium discoideum, growth and development are mutually exclusive and the transition between the two phases of the life cycle is regulated by the environment. This regulation is disturbed in HBW3, a chemically induced mutant with an unknown molecular defect. The mutant develops rapidly and expresses developmental markers during growth. Here we show that HBW3 fails to complement another mutant which has a similar phenotype: a targeted knock-out of the gdt1 gene. We further show that both mutations are recessive and that both are located on chromosome III, suggesting that the two mutations might be allelic. Molecular analysis, however, demonstrates that the gdt1 gene is not mutated in HBW3. Thus, although a wild-type copy of each gene is present in diploid cell lines, the defects due to the recessive mutations synergize to produce a detectable phenotype. The phenotypic similarities and differences between the two mutants are discussed.  相似文献   

12.
The developmental accumulation of lysosomal alpha-mannosidase-1 activity in Dictyostelium discoideum is controlled at the level of de novo enzyme precursor biosynthesis. Aggregation-deficient mutants are defective with regard to the accumulation of alpha-mannosidase-1 activity beyond 8-16 h of development. We used enzyme-specific monoclonal antibodies to show that the activity defect in aggregation-deficient strains is not due to a lack of alpha-mannosidase-1-precursor synthesis or processing, or to preferential degradation of the mature enzyme protein. Instead, the defect is a result of enzyme inactivation: cells of aggregation-deficient strains contain significant amounts of inactive alpha-mannosidase-1 protein late in development. The alpha-mannosidase-1 inactivation phenotype is associated with a more general defect in lysosomal enzyme modification. A change in the post-translational modification system occurs during normal slime-mold development, as shown by differences in enzyme isoelectric point, antigenicity, and thermolability. We found that this change in modification does not occur in mutant strains blocked early in development. We propose a model in which pleiotropic mutations in early aggregation-essential genes can indirectly affect the accumulation of alpha-mannosidase-1 activity by preventing the expression of a developmentally controlled change in the post-translational modification system, a change which is required for the stability of several lysosomal enzymes late in development.  相似文献   

13.
Mutations in the gene encoding 11-cis-retinol dehydrogenase (RDH5; EC ) are associated with fundus albipunctatus, an autosomal recessive eye disease characterized by stationary night blindness and accumulation of white spots in the retina. In addition, some mutated alleles are associated with development of cone dystrophy, especially in elderly patients. The numbers of identified RDH5 mutations linked to fundus albipunctatus have increased considerably during recent years. In this work, we have characterized the biochemical and cell biological properties of 11 mutants of RDH5 to understand the molecular pathology of the disease. All RDH5 mutants showed decreased protein stability and subcellular mislocalization and, in most cases, loss of enzymatic activity in vitro and in vivo. Surprisingly, mutant A294P displays significant enzymatic activity. Cross-linking studies and molecular modeling showed that RDH5 is dimeric, and co-expression analyses of wild-type and mutated alleles showed that the mutated enzymes, in a trans-dominant-negative manner, influenced the in vivo enzymatic properties of functional variants of the enzyme, particularly the A294P mutant. Thus, under certain conditions, nonfunctional alleles act in a dominant-negative way on functional but relatively unstable mutated alleles. However, in heterozygous individuals carrying one wild-type allele, the disease is recessive, probably due to the stability of the wild-type enzyme.  相似文献   

14.
15.
In this paper a localized strong reaction for non-specific esterase forming cylindric structures is described within skeletal muscle fibres from the beige mouse. It seems from zymograms and protein electrophoresis that this esterase is membrane bound, highly reactive and present in rather small amounts within the muscle fibres.  相似文献   

16.
《The Journal of cell biology》1993,123(6):1453-1462
Folic acid and cAMP are chemoattractants in Dictyostelium discoideum, which bind to different surface receptors. The signal is transduced from the receptors via different G proteins into a common pathway which includes guanylyl cyclase and acto-myosin. To investigate this common pathway, ten mutants which do not react chemotactically to both cAMP and folic acid were isolated with a simple new chemotactic assay. Genetic analysis shows that one of these mutants (KI-10) was dominant; the other nine mutants were recessive, and comprise nine complementation groups. In wild-type cells, the chemoattractants activate adenylyl cyclase, phospholipase C, and guanylyl cyclase in a transient manner. In mutant cells the formation of cAMP and IP3 were generally normal, whereas the cGMP response was altered in most of the ten mutants. Particularly, mutant KI-8 has strongly reduced basal guanylyl cyclase activity; the enzyme is present in mutant KI-10, but can not be activated by cAMP or folic acid. The cGMP response of five other mutants is altered in either magnitude, dose dependency, or kinetics. These observations suggest that the second messenger cGMP plays a key role in chemotaxis in Dictyostelium.  相似文献   

17.
The properties of the adenylate cyclase from forskolin-resistant mutants of Y1 adrenocortical tumor cells was compared with the properties of the enzyme from parental Y1 cells in order to localize the site of mutation. In parental Y1 cells, forskolin stimulated adenylate cyclase activity with kinetics suggestive of an interaction at two sites; in mutant cells, forskolin resistance was characterized by a decrease in enzymatic activity at both sites. Forskolin potentiated the enzyme's responses to NaF and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) in parent and mutant clones, and the mutant enzyme showed the same requirements for Mg2+ and Mn2+ as did the parent enzyme. The adenylate cyclase associated with forskolin-resistant mutants was insensitive to ACTH and was less responsive to Gpp(NH)p than was the parent enzyme. In parental Y1 cells and in the forskolin-resistant mutants, cholera toxin catalyzed the transfer of [32P]ADP-ribose from [32P]NAD+ into three membrane proteins associated with the alpha subunit of Gs; however, the amount of labeled ADP-ribose incorporated into mutant membranes was reduced by as much as 70%. Both parent and mutant membranes were labeled by pertussis toxin to the same extent. The insensitivity of the mutant adenylate cyclase to ACTH and Gpp(NH)p and the selective resistance of the mutant membranes to cholera toxin-catalyzed ADP-ribosylation suggest that a specific defect associated with Gs is involved in the mutation to forskolin resistance in Y1 cells.  相似文献   

18.
An inheritable bleeding disorder with light coat color caused by an autosomal recessive gene has been reported in a population of Japanese black cattle. The disease has been diagnosed as Chediak-Higashi Syndrome (CHS) of cattle which correspond to a human inheritable disorder caused by mutation in LYST gene. To characterize the molecular lesion causing CHS in cattle, cDNAs encoding bovine LYST were isolated from a bovine brain cDNA library. The nucleotide and deduced amino acid sequences of bovine LYST had 89.6 and 90.2% identity with those of the human LYST gene, respectively. In order to identify the mutation within the LYST gene causing CHS in cattle, cDNA fragments of the LYST gene were amplified from an affected animal by RT-PCR and their nucleotide sequences were completely determined. Notably, a nucleotide substitution of A to G transition, resulting in an amino acid substitution of histidine to arginine (H2015R) was identified in the affected animal. The presence of the substitution was completely corresponding with the occurrence of the CHS phenotype among 105 members of pedigrees of the Japanese black cattle and no cattle of other populations had this substitution. These findings strongly suggested that H2015R is the causative mutation in CHS of Japanese black cattle. Received: 25 May 1999 / Accepted: 26 July 1999  相似文献   

19.
20.
Evidence has been found for a generalized change in the post-translational modification of lysosomal enzymes during development of Dictyostelium discoideum. The physical and antigenic properties of four developmentally regulated lysosomal enzymes, N-acetylglucosaminidase, beta-glucosidase, alpha-mannosidase, and acid phosphatase, have been examined throughout the life cycle. In vegetative cells, a single major isoelectric species is detected for each enzymatic activity on native nonequilibrium isoelectric focusing gels. Between 6 and 10 hr of development, all activities, including the preformed enzyme, become less negatively charged, resulting in a modest but reproducible shift in the isoelectric focusing pattern. This alteration is not detected by native gel electrophoresis at constant pH. As development continues, the specific activity of beta-glucosidase, alpha-mannosidase, and acid phosphatase continues to increase and coincidentally, new, less acidic isozymic bands of activity can be observed on both gel systems. Some of these new isozymes accumulate preferentially in anterior cells, while others accumulate preferentially in posterior cells of migrating slugs. N-Acetylglucosaminidase does not increase in specific activity late in development and no new isozymic species appear. Using a monoclonal antibody that reacts with sulfated N-linked oligosaccharides shared by vegetative lysosomal enzymes in D. discoideum, the antigenicity of the developmental isozymes has been characterized. All of the enzymatic activity present during vegetative growth and early development is immunoprecipitable. However, the less negatively charged isozymes that accumulate after aggregation are not recognized by the antibody. Nonantigenic acid phosphatase and alpha-mannosidase are found in both anterior and posterior cells from migrating pseudoplasmodia. Since each enzyme is coded by a single structural gene, these results suggest that the isozymes present late in development arise from the synthesis of the same polypeptides with altered post-translational modifications. The appearance of anterior and posterior specific isozymes is likely to be the result of cell type specific changes in the glycoprotein modification pathway for newly synthesized proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号