首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Akinetes of a clonal culture of Anabaena circinalis Rabenhorst from Mt. Bold reservoir (eutrophic), South Australia, were isolated and the effects of light, phosphorus, and nitrogen availability on their germination were investigated. Light was required but there was no significant difference in percentage of germination after 72 h if akinetes were incubated in ASM-1 medium at irradiances of 15, 30, or 50 μmol.m-2.s-1. Maximum akinete germination occurred by 48 h. Nitrogen was not required, as 88% of akinetes germinated in the flasks without combined nitrogen added to the medium and without N2 in the air. NH4+-N at 28 mg N.L-1 completely suppressed germination, whereas 28 mg NO3 N.L-1 had no effect relative to the controls without nitrogen. Phosphorus was required, and at 48 h percentage of germination in the flasks with 0.6 mg P.L-1 added (78%) was significantly greater than in the flasks with 0.06 P.L-1 (58%) and 0 mgP.L-1 (24%) added. Germlings in the 0 mg P.L-1 flasks were only 2–4 cells long and stunted in appearance, whereas germlings at all other P concentrations were 8–16 cells long. It is likely that the isolation process exposed some akinetes to intracellular phosphorus released from lysing vegetative cells, but this was insufficient to allow normal development in the 0 mg P.L-1 flasks. The plot of percentage of germination vs. initial phosphorus concentration, in the medium showed a relationship analogous to Michaelis-Menten nutrient uptake kinetics, suggesting that a specific membrane-bound enzyme system(s) is involved, with phosphorus as the substrate. The half saturation value (KS) for germination was 50 μg P.L-1.  相似文献   

3.
Effect of desiccation on the germination of akinetes of Anabaena cylindrica   总被引:2,自引:0,他引:2  
Akinetes of Anabaena cylindrica were more tolerant to desiccationthan vegetative cells. Desiccated akinetes retained the germinationability after storage in darkness for 5 years. Desiccated vegetativecells failed to grow after storage of only 15 days. (Received January 31, 1975; )  相似文献   

4.
Cyanobacteria are photosynthetic organisms that have been considered for space applications, such as oxygen production in bioregenerative life support systems, and can be used as a model organism for understanding microbial survival in space. Akinetes are resting-state cells of cyanobacteria that are produced by certain genera of heterocystous cyanobacteria to survive extreme environmental conditions. Although they are similar in nature to endospores, there have been no investigations into the survival of akinetes in extraterrestrial environments. The aim of this work was to examine the survival of akinetes from Anabaena cylindrica in simulated extraterrestrial conditions and in Low Earth Orbit (LEO). Akinetes were dried onto limestone rocks and sent into LEO for 10 days on the ESA Biopan VI. In ground-based experiments, the rocks were exposed to periods of desiccation, vacuum (0.7 × 10−3 kPa), temperature extremes (−80 to 80°C), Mars conditions (−27°C, 0.8 kPa, CO2) and UV radiation (325–400 nm). A proportion of the akinete population was able to survive a period of 10 days in LEO and 28 days in Mars simulated conditions, when the rocks were not subjected to UV radiation. Furthermore, the akinetes were able to survive 28 days of exposure to desiccation and low temperature with high viability remaining. Yet long periods of vacuum and high temperature were lethal to the akinetes. This work shows that akinetes are extreme-tolerating states of cyanobacteria that have a practical use in space applications and yield new insight into the survival of microbial resting-state cells in space conditions.  相似文献   

5.
Summary The present study reports that a revised nutrient concentration in the basal medium improved shoot bud induction and subsequent plant regeneration in barley (Hordeum vulgare L. var. BL-2). Cultures were raised from immature embryos on MSB5 medium supplemented with picloram. Concentrations of five nutrients were varied. The effect of these nutrients was investigated on (1) induction, (2) induction and subculture, and (3) induction, subculture and regeneration stages. The basal MSB5 medium was not optimal for each phase of barley culture. Decreased ammonium nitrate, increased potassium dihydrogen phosphate, sodium molybdate, cobalt chloride, and addition of glycine enhanced shoot bud induction and plant regeneration. The different media that were optimal for immature embryo culture were: MSB5 medium supplemented with 20.70 μM picloram, 10.30 mM NH4NO3, 6.25 mM KH2PO4, 2.06 μM Na2MoO4, 0.55 μM CoCl2, and 26.64 μM glycine (for induction); MSB5 medium supplemented with 12.47 μM picloram, 10.30 mM NH4NO3, and 0.55 μM CoCl2 (for subculture); and MSB5 medium supplemented with 0.2 μM picloram and 10.3 mM NH4NO3 (for regeneration). Primary cultures required 6wk (without transfer) for morphogenic callus formation. Callus required 4wk of subculture and another 4wk on regeneration medium for optimal plant regeneration. The revised medium could also promote regeneration of the recalcitrant barley genotype RD-2552. Histological analysis showed that the major pathway of differentiation was through shoot bud formation.  相似文献   

6.
Akinetes are spore‐like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light intensity and quality, temperature, and nutrient deficiency. Here, we report that deprivation of potassium ion (K+) triggers akinete development in the cyanobacterium Aphanizomenon ovalisporum. Akinetes formation is initiated 3 d–7 d after an induction by K+ depletion, followed by 2–3 weeks of a maturation process. Akinete formation occurs within a restricted matrix of environmental conditions such as temperature, light intensity or photon flux. Phosphate is essential for akinete maturation and P‐limitation restricts the number of mature akinetes. DNA replication is essential for akinete maturation and akinete development is limited in the presence of Nalidixic acid. While our results unequivocally demonstrated the effect of K+ deficiency on akinete formation in laboratory cultures of A. ovalisporum, this trigger did not cause Cylindrospermopsis raciborskii to produce akinetes. Anabaena crassa however, produced akinetes upon potassium deficiency, but the highest akinete concentration was achieved at conditions that supported vegetative growth. It is speculated that an unknown internal signal is associated with the cellular response to K+ deficiency to induce the differentiation of a certain vegetative cell in a trichome into an akinete. A universal stress protein that functions as mediator in K+ deficiency signal transduction cascade, may communicate between the lack of K+ and akinete induction.  相似文献   

7.
Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Inorganic nitrogen salts in the imbibition solutions reduced seed skotodormancy. Ten-day DS seeds, imbibed in 25 mm salt solutions followed by terminal R, germinated 99% if imbibed in NH4NO3, 70% if imbibed in KNO3 or NH4Cl, and 55% if imbibed in NaNO3. Seeds imbibed in higher salt concentrations germinated fully upon terminal R treatment. Seeds imbibed in 25 mm NH4Cl or in 50 mm NH4NO3 germinated completely upon GA3 treatment. Osmotic effects of imbibition media accounted for only part of the effect, since seeds imbibed in 50 mm CaCl2 or NaCl germinated poorly following R or GA3 treatment. Seeds imbibed in 500 mm polyethylene glycol (PEG) 1000 or mannitol solutions for 10 days still exhibited skotodormancy. Treatments of R or GA3 did not stimulate germination in seeds imbibed in mannitol, but germination was complete if seeds were given 1-h acid immersion plus a water rinse before the terminal R or GA3 treatment. Seeds imbibed in 50–500 mm PEG during 10-day DS germinated significantly better in response to terminal R. Terminal GA3 significantly improved germination only in seeds imbibed at 500 mm PEG. Pfr appeared to function in mannitol-imbibed seed only after an acid treatment. Seed exposure to inorganic nitrogen salts during the 10-day DS maintained seed sensitivity to terminal R or GA3 treatment. The depth of seed skotodormancy was related to the availability of inorganic nitrogen and also involved the levels of Pfr or endogenous GA3.Abbreviations FR far red - DS dark storage - R red - GA3 gibberellin A3 - PEG polyethylene glycol - SHAM salicylhydroxamic acid - ANOVA analysis of variance - GLM general linear model - LSD least squares difference - Pfr far-red absorbing form of phytochrome  相似文献   

8.
Summary Two protocols for clonal propagation of kurrat (Allium ampeloprasum var.kurrat) using explants from the basal plates of mature plants are described. In direct formation, explants were cultured in Murashige and Skoog (MS) medium and supplemented with either benzyladenine at 0.0 or 4.4 μM, or supplemented with 7.0 μM benzyladenine and 0.1 μM naphthaleneacetic acid. Shoots appeared after 4 wk of culture. In the two-step procedure, explants were cultured first on MS medium supplemented with 1.4 μM 2,4-dichlorophenoxyacetic acid and 1.4 μM kinetin, and incubated in the dark for 4 wk. They were then transferred to MS medium supplemented with 4.4 μM benzyladenine for shoot formation. All shoots were rooted on MS medium containing 5 g·liter−1 activated charcoal. Normal viable plants were successfully established in soil.  相似文献   

9.
Neo-peptone B119 (Difco) was found to have a significant effect on differentiation of heterocysts and akinetes in Anabaena cylindrica. On adding neopeptone (0.4 g/l) to exponential phase culture of A. cylindrica, the following effects were observed (i) increased heterocyst frequency with altered heterocyst spacing and presence of double and multiple heterocysts after 24 h in cultures grown on N-free medium, (ii) induction of regular pattern of heterocysts after 48 h, in culture grown on medium supplemented with NH4Cl, (iii) induction of pro-akinetes after 48 h in both N-free and ammonium-grown cultures. The higher concentrations of neo-peptone were lytic to A. cylindrica, and, its lytic and inductive effects could be decreased by acid hydrolysis or supplementation of NH4Cl. Gel-filtration of neo-peptone showed that the inductive as well as the lytic effect was associated with some active factor(s) with molecular weight between 10,000–20,000. The retention of the inductive effect on autoclavation but its loss on trypsin digestion suggested that active factor(s) may be heat stable polypeptide(s). The heterocyst induction by active factor(s) decreased and akinete induction increased with increasing culture age. The pro-akinetes induced during exponential phase divided before maturation, while those induced during late exponential phase, could achieve full maturity. Growth and nitrogenase activity was unaffected while there was an increase in mean cell length on treatment of A. cylindrica with active factor(s) from neo-peptone, indicating that the effect may be mediated through cell division process(es).Abbreviations used N Nitrogen - chl chlorophyll  相似文献   

10.
The fatty acid composition of akinetes, heterocysts and vegetativecells in Anabaena cylindrica was examined. Akinetes and heterocystscontained much less -linolenic acid than did vegetative cells.Furthermore, akinetes and heterocysts contained fatty acidswith less unsaturation as compared with vegetative cells. (Received February 19, 1972; )  相似文献   

11.
Abstract Effect of ammonium on in vivo activity of nitrate reductase in roots, shoots and leaves of maize (Zea mays L.) seedlings was studied in relation to light/dark conditions and EDTA supply. Supply of 5 mM (NH4)2SO4 increased the steady state level of enzyme only in leaves and in light, while it had no effect in roots and shoots and in the dark. The substrate induction of enzyme was also little affected by 1 to 10 mM (NH4)2SO4 in roots and shoots. In the leaves the activity in the dark was either inhibited (minus EDTA) or stimulated (plus EDTA) by 5 to 10 mM (NH4)2SO4. The activity was stimulated in the light also in the presence of EDTA at higher concentrations of ammonium. When different concentrations of ammonium were supplied without any exogenous nitrate in the light, the enzyme activity increased at low concentration and was either inhibited or unaffected at higher concentrations depending upon the tissue used. Supply of EDTA with ammonium modified its effect to some extent. It is suggested that the effect of ammonium on nitrate reductase activity depends upon the tissue used and the effective concentration of the ammonium.  相似文献   

12.
It has been demonstrated previously that field pea (Pisum sativum L. cv. Express) grown in hydroponic culture on a complete nutrient solution with low NH4+ concentrations (<0.5 mM) will produce a larger than normal proliferation of nodules. Peas grown in the absence of mineral N in hydroponic culture have been shown to rapidly autoregulate nodulation, forming a static nodule number by 14 to 21 days after planting. The present study further characterizes the effect of NH4+ concentration in hydroponic culture on nodulation and nodule growth. Peas were grown continually for 4 weeks at NH4+ concentrations that were autoregulatory (0.0 mM), stimulatory (0.2 mM) or inhibitory (1.0 mM), or peas were transferred between autoregulatory or NH4+ inhibited and stimulatory solutions after 2 weeks. The peas nodulated as expected when grown under constant autoregulatory, stimulatory or inhibitory concentrations of NH4+. When peas were transferred from the inhibitory (1.0 mM) to the stimulatory solution (0.2 mM) a massive proliferation of nodule primordia over the entire root system was observed within 3 days of the transfer. When they were transferred from the autoregulatory (0.0 mM) to the stimulatory (0.2 mM) solution a 10-day delay occurred before a proliferation in nodule primordia occurred at distal regions of the root system. These findings support our hypothesis that low concentrations (<1.0 mM) of NH4+ in hydroponic culture cause a suppression of autoregulation in pea. In addition, the temporal and spatial differences in nodule proliferation between transfer treatments demonstrate at a whole plant level that autoregulation and NH4+ inhibition suppress early nodule development via different mechanisms.  相似文献   

13.
Wells  Darren M.  Miller  Anthony J. 《Plant and Soil》2000,221(1):103-106
The study of ammonium (NH4 +) transport across plant cell membranes requires accurate measurement of NH4 + gradients across subcellular gradients. We have developed an ammonium-selective microelectrode based on the ionophore nonactin. This electrode can detect NH4 + activities (aNH4) in vivo in the millimolar range in the presence of cytosolic levels of potassium, the main interfering ion. The electrode was used to measure intracellular aNH4 in internodal cells of the giant alga Chara corallina. Results from cells incubated in media supplemented with 1 mM NH4 + produced two populations, with means of 7.3 and 30.8 mM, respectively. HPLC analysis of vacuolar sap suggests the higher population represents vacuolar impalements, and the lower population can thus be assumed to be cytosolic. These results suggest a four-fold accumulation of NH4 + in the vacuolar compartment of Chara. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
This paper seeks to calarify conflicting reports on the nitrogen requirements for in vitro embryogenesis in Daucus carota. Tissue derived from petiole explants of the wild strain of this species were tested with a variety of sources of cellular nitrogen under conditions otherwise favorable for in vitro embryogenesis. The use of very small, sieved and well-washed inocula reduced the carry-over of soluble materials with the inoculum. Embryo yield was quantified by direct counting of samples. Nitrate at concentrations ranging from 5 to 95 mM KNO3 supportes only weak growth and very low embryogenesis under the exacting conditions of these experiments. As little as 0.1 mM NH4Cl added to a nitrate medium allows some embryogenesis and 10 mM NH4Cl is near optimal when KNO3 is in the range of 12 to 40 mM concentration. Glutamine, glutamic acid, urea and alanine can individually partially replace NH4Cl as a supplement to KNO3. Glutamine, alanine, and possibly glutamic acid can serve as sole sources of nitrogen supporting both good growth and embryogenesis. It was concluded that a reduced nitrogen source is required, at least as a supplement to nitrate, for rapid growth and for in vitro embryogenesis of cultured wild carrot tissue. The relationship of pH of the culture medium to growth and embryogenesis was explored and optima observed at approximately pH 5.4 for both processes.  相似文献   

15.
Summary Homeostasis of intracellular calcium ([Ca++]i) and pH (pHi) is important in the cell's ability to respond to growth factors, to initiate differentiation and proliferation, and to maintain normal metabolic pathways. Because of the importance of these ions to cellular functions, we investigated the effects of changes of [Ca++]i and pHi on each other in primary cultures of rabbit corneal epithelial cells. Digitized fluorescence imaging was used to measure [Ca++]i with fura-2 and pHi with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Resting pHi in these cells was 7.37±0.05 (n=20 cells) and resting [Ca++]i was 129±10 nM (n=35 cells) using a nominally bicarbonate-free Krebs Ringer HEPES buffer (KRHB), pH 7.4. On exposure to 20 mM NH4Cl, which rapidly alkalinized cells by 0.45 pH units, an increase in [Ca++]i to 215±14 nM occurred. Pretreatment of the cells with 100 μM verapamil or exposure to 1 mM ethylene bis-(oxyethylenenitrilo)-tetraacetic acid (EGTA) without extracellular calcium before addition of 20 mM NH4Cl did not abolish the calcium increase, suggesting that the source of the calcium transient was from intracellular calcium stores. On removal of NH4Cl or addition of 20 mM sodium lactate, there were minimal changes in calcium even though pHi decreased. Treatment of CE cells with the calcium ionophores, ionomycin and 4-bromo A23187, increased [Ca++]i, but produced a biphasic change in pHi. Initially, there was an acidification of the cytosol, and then an alkalinization of 0.10 to 0.11 pH units above initial values. When [Ca++]i was decreased by treating the cells with 5 mM EGTA and 20 μM ionomycin, pHi decreased by 0.35±0.02 units. We conclude that an increase in pHi leads to an increase in [Ca++]i in rabbit corneal epithelial cells; however, a decrease in pHi leads to minor changes in [Ca++]i. The ability of CE cells to maintain proper calcium homeostasis when pHi is decreased may represent an adaptive mechanism to maintain physiological calcium levels during periods of acidification, which occur during prolonged eye closure.  相似文献   

16.
An NADP-specific glutamate dehydrogenase [L-glutamate: NADP+ oxidoreductase (deaminating), EC 1.4.1.4] from alkaliphilic Bacillus sp. KSM-635 was purified 5840-fold to homogeneity by a several-step procedure involving Red-Toyopearl affinity chromatography. The native protein, with an isoelectric point of pH 4.87, had a molecular mass of approximately 315 kDa consisting of six identical summits each with a molecular mass of 52 kDa. The pH optima for the aminating and deaminating reactions were 7.5 and 8.5, respectively. The optimum temperature was around 60°C for both. The purified enzyme had a specific activity of 416units/mg protein for the aminating reaction, being over 20-fold greater than that for deaminating reaction, at the respective pH optima and at 30°C. The enzyme was specific for NADPH (Km 44 μM), 2-oxoglutarate (Km 3.13 mM), NADP+ (Km 29 μM), and L-glutamate (Km 6.06 mM). The Km for NH4Cl was 5.96 mM. The enzyme could be stored without appreciable loss of enzyme activity at 5°C for half a year in phosphate buffer (pH 7.0) containing 2 mM 2-mercaptoethanol, although the enzyme activity was abolished within 20 h by freezing at ?20°C.  相似文献   

17.
The mere vegetative survival was not sufficient but suitable growth conditions were required for akinete formation to occur in the blue-green algaeAnabœna iyengarii, Westiellopsis prolifica, Nostochopsis lobatus and in the green algaPithophora oedogonia. In all algae, akinetes were neither formed nor germinated in darkness, and while dim light of 300 lx was sufficient for most of akinetes to germinate and also to maintain vegetative survival, it was not adequate for optinum akinete formation. Although akinetes of all algae could germinate at 35°C, both the vegetative survival and akinete formation were markedly suppressed at this temperature. Heat or UV shock of any level, whether ineffective or effecting vegetative survival, did not promote akinete formation or germination in any alga tested. Akinetes of all algae under study were relatively tolerant to heat and also to some extent to UV. Both wet and dried akinetes of all algae were equally UV tolerant. In all algae, the viability of both wet and dried akinetes decreased more or less equally with storage time, but the decrease was more drastic when storage temperature was progressively lowered from 20 to 0°C. Hence the akinetes can tolerate dryness but not frost.  相似文献   

18.
The genus Archaeoellipsoides Horodyski & Donaldson comprises large (up to 135 μ long) ellipsoidal and rod-shaped microfossils commonly found in silicified peritidal carbonates of Mesoproterozoic age. Based on morphometric and sedimentary comparisons with the akinetes of modern bloom-forming Anabaena species, Archaeoellipsoides is interpreted as the fossilized remains of akinetes produced by planktic heterocystous cyanobacteria. These fossils set a minimum date for the evolution of derived cyanobacteria capable of marked cell differentiation, and they corroborate geochemical evidence indicating that atmospheric oxygen levels were well above 1% of present day levels 1,500 million years ago. Akinetes, atmospheric oxygen, cyanobacteria, heterocyst, microbial fossils, nitrogen fixation, peritidal, Proterozoic.  相似文献   

19.
Summary A number of methods have been developed to measure intracellular pH (pHi) because of its importance in intracellular events. A major advance in accurate pHi measurement was the development of the ratiometric fluorescent indicator dye, 2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). We have used a fluorescence multi-well plate reader and a ratiometric method for determining pHi in primary cultures of rabbit corneal epithelial (CE) cells with BCECF. Fluorescence was measured at excitation wavelengths of 485±11 nm and 395±12.5 nm, with emission detected at 530±15 nm. Cells grown in multi-well plates were loaded with 4 μM BCECF for 30 min at 37° C. Resting pHi was 7.34±0.03 (2 cultures, N=5 wells). Changes in pHi determined with the fluorescence multi-well plate reader after the addition and removal of NH4Cl or sodium lactate were comparable to changes in cells analyzed with a digitized fluorescence imaging system. A concentration-response relationship involving changes in pHi was easily demonstrated in CE cells after treatment with ionomycin, a calcium ionophore. Low doses of ionomycin (2.5–5 μM), produced a prolonged acidification; 7.5 μM ionomycin produced a transient acidification; and 10 μM ionomycin resulted in a slight alkalinization. We conclude that accurate pHi measurements can be obtained with a ratiometric method with BCECF in a multi-well plate reader. This technology may simplify screening studies evaluating effects of hormones, growth factors, or toxicants on pHi homeostasis.  相似文献   

20.
Anabaena variabilis can be cloned in the dark from fragments with one and few cells, with an efficiency of about 40%, on the nitrogen-free medium of Allen and Arnon solidified with 0.5% agarose and supplemented with 5 mM fructose. The organism can be grown exponentially (236 h) in fermentor cultures in the dark, fixing N2, to a density of greater than 10 g dry weight/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号