首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ure2 protein from baker's yeast (Saccharomyces cerevisiae) has prion properties. In vitro, at neutral pH, soluble Ure2p forms long, twisted fibrils. Two models have been proposed to account for Ure2p polymerization. The first postulates that a segment of 70 amino acid residues in the flexible N-terminal domain from different Ure2p molecules forms a parallel superpleated beta-structure running along the fibrils. The second hypothesizes that assembly of full-length Ure2p is driven by limited conformational rearrangements and non-native inter- and intramolecular interactions. The knowledge of the three-dimensional structure of the fibrillar form of Ure2p is critical for understanding the molecular events leading to the polymerization of soluble Ure2p into fibrils and hence for the design of inhibitors that might have therapeutic potential as yeast prions possessing domains rich in N and Q residues, similar to huntingtin. Solvent-accessibility studies using hydrogen/deuterium exchange monitored by mass spectrometry (HXMS) can provide insights into the structure of the fibrillar form of Ure2p and characterize at the molecular level the conformational rearrangements that occur upon assembly, in particular through the identification of protected regions and their localization in the overall structure of the protein. We have analyzed the changes in Ure2p structure associated with its assembly into fibrils using HXMS. The deuterium incorporation profile along the sequence allows the identification of the regions that exhibit the most important conformational change. Our data reveal that Ure2p undergoes minor structural changes upon assembly. While polypeptides [82-92] and [13-37] exhibit significant increased and decreased exposure to the solvent, respectively, no marked change was observed for the rest of the protein upon assembly. Our results afford new insights into the conformational rearrangements that lead to the assembly of Ure2p into fibrils and the propagation of the [URE3] element in yeast.  相似文献   

2.
Molecular chaperones and the assembly of the prion Ure2p in vitro   总被引:2,自引:0,他引:2  
The protein Ure2 from Saccharomyces cerevisiae possesses prion properties at the origin of the [URE3] trait. In vivo, a high molecular weight form of inactive Ure2p is associated to [URE3]. The faithful and continued propagation of [URE3]is dependent on the expression levels of molecular chaperones from the Hsp100, -70, and -40 families; however, so far, their role is not fully documented. Here we investigate the effects of molecular chaperones from the Hsp40, Hsp70, Hsp90, and Hsp100 families and the chaperonin CCT/Tric on the assembly of full-length Ure2p. We show that Hsp104p greatly stimulates Ure2p aggregation, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p inhibit aggregation to different extents. The nature of the high molecular weight Ure2p species that forms in the presence of the different molecular chaperones and their nucleotide dependence is described. We show that Hsp104p favors the aggregation of Ure2p into non-fibrillar high molecular weight particles, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p sequester Ure2p in spherical oligomers. Using fluorescently labeled full-length Ure2p and Ure2p-(94-354) and fluorescence polarization, we show that Ssa1p binding to Ure2p is ATP-dependent, whereas that of Hsp104p is not. We also show that Ssa1p preferentially interacts with the N-terminal domain of Ure2p that is critical for prion propagation, whereas Ydj1p preferentially interacts with the C-terminal domain of the protein, and we discuss the significance of this observation. Finally, the affinities of Ssa1p, Ydj1p, and Hsp104p for Ure2p are determined. Our in vitro observations bring new insight into the mechanism by which molecular chaperones influence the propagation of [URE3].  相似文献   

3.
The [URE3] factor of Saccharomyces cerevisiae propagates by a prion-like mechanism and corresponds to the loss of the function of the cellular protein Ure2. The molecular basis of the propagation of this phenotype is unknown. We recently expressed Ure2p in Escherichia coli and demonstrated that the N-terminal region of the protein is flexible and unstructured, while its C-terminal region is compactly folded. Ure2p oligomerizes in solution to form mainly dimers that assemble into fibrils [Thual et al. (1999) J. Biol. Chem. 274, 13666-13674]. To determine the role played by each domain of Ure2p in the overall properties of the protein, specifically, its stability, conformation, and capacity to assemble into fibrils, we have further analyzed the properties of Ure2p N- and C-terminal regions. We show here that Ure2p dimerizes through its C-terminal region. We also show that the N-terminal region is essential for directing the assembly of the protein into a particular pathway that yields amyloid fibrils. A full-length Ure2p variant that possesses an additional tryptophan residue in its N-terminal moiety was generated to follow conformational changes affecting this domain. Comparison of the overall conformation, folding, and unfolding properties, and the behavior upon proteolytic treatments of full-length Ure2p, Ure2pW37 variant, and Ure2p C-terminal fragment reveals that Ure2p N-terminal domain confers no additional stability to the protein. This study reveals the existence of a stable unfolding intermediate of Ure2p under conditions where the protein assembles into amyloid fibrils. Our results contradict the intramolecular interaction between the N- and C-terminal moieties of Ure2p and the single unfolding transitions reported in a number of previous studies.  相似文献   

4.
Sacchromyces cerevisiae prion-like protein Ure2 was expressed in Escherichia coli and was purified to homogeneity. We show here that Ure2p is a soluble protein that can assemble into fibers that are similar to the fibers observed in the case of PrP in its scrapie prion filaments form or that form on Sup35 self-assembly. Ure2p self-assembly is a cooperative process where one can distinguish a lag phase followed by an elongation phase preceding a plateau. A combination of size exclusion chromatography, sedimentation velocity, and electron microscopy demonstrates that the soluble form of Ure2p consists at least of three forms of the protein as follows: a monomeric, dimeric, and tetrameric form whose abundance is concentration-dependent. By the use of limited proteolysis, intrinsic fluorescence, and circular dichroism measurements, we bring strong evidence for the existence of at least two structural domains in Ure2p molecules. Indeed, Ure2p NH2-terminal region is found poorly structured, whereas its COOH-terminal domain appears to be compactly folded. Finally, we show that only slight conformational changes accompany Ure2p assembly into insoluble high molecular weight oligomers. These changes essentially affect the COOH-terminal part of the molecule. The properties of Ure2p are compared in the discussion to that of other prion-like proteins such as Sup35 and mammalian prion protein PrP.  相似文献   

5.
Two infectious proteins (prions) of Saccharomyces cerevisiae have been identified by their unusual genetic properties: (1) reversible curability, (2) de novo induction of the infectious prion form by overproduction of the protein, and (3) similar phenotype of the prion and mutation in the chromosomal gene encoding the protein. [URE3] is an altered infectious form of the Ure2 protein, a regulator of nitrogen catabolism, while [PSI] is a prion of the Sup35 protein, a subunit of the translation termination factor. The altered form of each is inactive in its normal function, but is able to convert the corresponding normal protein into the same altered inactive state. The N-terminal parts of Ure2p and Sup35p (the "prion domains") are responsible for prion formation and propagation and are rich in asparagine and glutamine residues. Ure2p and Sup35p are aggregated in vivo in [URE3]- and [PSI]-containing cells, respectively. The prion domains can form amyloid in vitro, suggesting that amyloid formation is the basis of these two prion diseases. Yeast prions can be cured by growth on millimolar concentrations of guanidine. An excess or deficiency of the chaperone Hsp104 cures the [PSI] prion. Overexpression of fragments of Ure2p or certain fusion proteins leads to curing of [URE3].  相似文献   

6.
The Ure2 protein from the yeast Saccharomyces cerevisiae has prion properties. In vitro and at neutral pH, soluble Ure2p spontaneously forms long, straight, insoluble protein fibrils. Two models have been proposed to account for the assembly of Ure2p into protein fibrils. The "amyloid backbone" model postulates that a segment ranging from 40 to 70 amino acids in the flexible N-terminal domain from different Ure2p molecules forms a parallel superpleated beta-structure running along the fibrils. The second model hypothesizes that assembly of full-length Ure2p is driven by limited conformational rearrangements and non-native inter- and/or intramolecular interactions between Ure2p monomers. Here, we performed a cysteine scan on residues located in the N- and C-terminal parts of Ure2p to determine whether these domains interact. Amino acid sequences centered around residue 6 in the N-terminal domain of Ure2p and residue 137 in the C-terminal moiety interacted at least transiently via intramolecular interactions. We documented the assembly properties of a Ure2p variant in which a disulfide bond was established between the N- and C-terminal domains and showed that it possesses assembly properties indistinguishable from those of wild-type Ure2p. We probed the structure of Ure2pC6C137 within the fibrils and demonstrate that the polypeptide is in a conformation similar to that of its soluble assembly-competent state. Our results constitute the first structural characterization of the N-terminal domain of Ure2p in both its soluble assembly-competent and fibrillar forms. Our data indicate that the flexibility of the N-terminal domain and conformational changes within this domain are essential for fibril formation and provide new insight into the conformational rearrangements that lead to the assembly of Ure2p into fibrils and the propagation of the [URE3] phenotype in yeast.  相似文献   

7.
L Bousset  H Belrhali  R Melki  S Morera 《Biochemistry》2001,40(45):13564-13573
The [URE3] phenotype in yeast Saccharomyces cerevisiae is due to an altered prion form of Ure2p, a protein involved in nitrogen catabolism. To understand possible conformational changes at the origin of prion propagation, we previously solved the crystal structure of the Ure2p functional region [Bousset et al. (2001) Structure 9, 39-46]. We showed the protein to have a fold similar to that of the beta class of glutathione S-transferases (GSTs). Here we report crystal structures of the Ure2p functional region (extending from residues 95-354) in complex with glutathione (GSH), the substrate of all GSTs, and two widely used GST inhibitors, namely, S-hexylglutathione and S-p-nitrobenzylglutathione. In a manner similar to what is observed in many GSTs, ligand binding is not accompanied by a significant change in the conformation of the protein. We identify one GSH and one hydrophobic electrophile binding site per monomer as observed in all other GSTs. The sulfur group of GSH, that conjugates electrophiles, is located near the amide group of Asn124, allowing a hydrogen bond to be formed. Biochemical data indicate that GSH binds to Ure2p with high affinity. Its binding affects Ure2p oligomerization but has no effect on the assembly of the protein into amyloid fibrils. Despite results indicating that Ure2p lacks GST activity, we propose that Ure2p is a member of the GST superfamily that may describe a novel GST class. Our data bring new insights into the function of the Ure2p active region.  相似文献   

8.
Ure2, a regulator of nitrogen metabolism, is the protein determinant of the [URE3] prion state in Saccharomyces cerevisiae. Upon conversion into the prion form, Ure2 undergoes a heritable conformational change to an amyloid-like aggregated state and loses its regulatory function. A number of molecular chaperones have been found to affect the prion properties of Ure2. The studies carried out in our laboratory have been aimed at elucidating the structure of Ure2 fibrils, the mechanism of amyloid formation and the effect of chaperones on the fibril formation of Ure2.  相似文献   

9.
The Ure2 protein from Saccharomyces cerevisiae has been proposed to undergo a prion-like autocatalytic conformational change, which leads to inactivation of the protein, thereby generating the [URE3] phenotype. The first 65 amino acids, which are dispensable for the cellular function of Ure2p in nitrogen metabolism, are necessary and sufficient for [URE3] (Masison & Wickner, 1995), leading to designation of this domain as the Ure2 prion domain (UPD). We expressed both UPD and Ure2 as glutathione-S-transferase (GST) fusion proteins in Escherichia coli and observed both to be initially soluble. Upon cleavage of GST-UPD by thrombin, the released UPD formed ordered fibrils that displayed amyloid-like characteristics, such as Congo red dye binding and green-gold birefringence. The fibrils exhibited high beta-sheet content by Fourier transform infrared spectroscopy. Fiber formation proceeded in an autocatalytic manner. In contrast, the released, full-length Ure2p formed mostly amorphous aggregates; a small amount polymerized into fibrils of uniform size and morphology. Aggregation of Ure2p could be seeded by UPD fibrils. Our results provide biochemical support for the proposal that the [URE3] state is caused by a self-propagating inactive form of Ure2p. We also found that the uncleaved GST-UPD fusion protein could polymerize into amyloid fibrils by a strictly autocatalytic mechanism, forcing the GST moiety of the protein to adopt a new, beta-sheet-rich conformation. The findings on the GST-UPD fusion protein indicate that the ability of the prion domain to mediate a prion-like conversion process is not specific for or limited to the Ure2p.  相似文献   

10.
BACKGROUND: The [URE3] non-Mendelian element of the yeast S. cerevisiae is due to the propagation of a transmissible form of the protein Ure2. The infectivity of Ure2p is thought to originate from a conformational change of the normal form of the prion protein. This conformational change generates a form of Ure2p that assembles into amyloid fibrils. Hence, knowledge of the three-dimensional structure of prion proteins such as Ure2p should help in understanding the mechanism of amyloid formation associated with a number of neurodegenerative diseases. RESULTS: Here we report the three-dimensional crystal structure of the globular region of Ure2p (residues 95--354), also called the functional region, solved at 2.5 A resolution by the MAD method. The structure of Ure2p 95--354 shows a two-domain protein forming a globular dimer. The N-terminal domain is composed of a central 4 strand beta sheet flanked by four alpha helices, two on each side. In contrast, the C-terminal domain is entirely alpha-helical. The fold of Ure2p 95--354 resembles that of the beta class glutathione S-transferases (GST), in line with a weak similarity in the amino acid sequence that exists between these proteins. Ure2p dimerizes as GST does and possesses a potential ligand binding site, although it lacks GST activity. CONCLUSIONS: The structure of the functional region of Ure2p is the first crystal structure of a prion protein. Structure comparisons between Ure2p 95--354 and GST identified a 32 amino acid residues cap region in Ure2p exposed to the solvent. The cap region is highly flexible and may interact with the N-terminal region of the partner subunit in the dimer. The implication of this interaction in the assembly of Ure2p into amyloid fibrils is discussed.  相似文献   

11.
The propagation of yeast prion phenotypes is highly dependent on molecular chaperones. We previously demonstrated that the molecular chaperone Ssa1p sequesters Ure2p in high molecular weight, assembly incompetent oligomeric species. We also determined the affinity of Ssa1p for Ure2p, and its globular domain. To map the Ure2p-Ssa1p interface, we have used chemical cross-linkers and MS. We demonstrate that Ure2p and Ssa1p form a 1 : 1 complex. An analytical strategy combining in-gel digestion of cross-linked protein complexes, and both MS and MS/MS analysis of proteolytic peptides, allowed us to identify a number of peptides that were modified because they are exposed to the solvent. A difference in the exposure to the solvent of a single lysine residue, lysine 339 of Ure2p, was detected upon Ure2p-Ssa1p complex formation. These observations strongly suggest that lysine 339 and its flanking amino acid stretches are involved in the interaction between Ure2p and Ssa1p. They also reveal that the Ure2p amino-acid stretch spanning residues 327-339 plays a central role in the assembly into fibrils.  相似文献   

12.
The [URE3] yeast prion is a self-propagating inactive form of the Ure2p protein. We show here that Ure2p from the species Saccharomyces paradoxus (Ure2pSp) can be efficiently converted into a prion form and propagate [URE3] when expressed in Saccharomyces cerevisiae at physiological level. We found however that Ure2pSp overexpression prevents efficient prion propagation. We have compared the aggregation rate and propagon numbers of Ure2pSp and of S. cerevisiae Ure2p (Ure2pSc) in [URE3] cells both at different expression levels. Overexpression of both Ure2p orthologues accelerates formation of large aggregates but Ure2pSp aggregates faster than Ure2pSc. Although the yeast cells that contain these large Ure2p aggregates do not transmit [URE3] to daughter cells, the corresponding crude extract retains the ability to induce [URE3] in wild-type [ure3-0] cells. At low expression level, propagon numbers are higher with Ure2pSc than with Ure2pSp. Overexpression of Ure2p decreases the number of [URE3] propagons with Ure2pSc. Together, our results demonstrate that the concentration of a prion protein is a key factor for prion propagation. We propose a model to explain how prion protein overexpression can produce a detrimental effect on prion propagation and why Ure2pSp might be more sensitive to such effects than Ure2pSc.  相似文献   

13.
The difference between the prion and the non-prion form of a protein is given solely by its three-dimensional structure, according to the prion hypothesis. It has been shown that solid-state NMR can unravel the atomic-resolution three-dimensional structure of prion fragments but, in the case of Ure2p, no highly resolved spectra are obtained from the isolated prion domain. Here, we demonstrate that the spectra of full-length fibrils of Ure2p interestingly lead to highly resolved solid-state NMR spectra. Prion fibrils formed under physiological conditions are therefore well-ordered objects on the molecular level. Comparing the full-length NMR spectra with the corresponding spectra of the prion and globular domains in isolation reveals that the globular part in particular shows almost perfect structural order. The NMR linewidths in these spectra are as narrow as the ones observed in crystals of the isolated globular domain. For the prion domain, the spectra reflect partial disorder, suggesting structural heterogeneity, both in isolation and in full-length Ure2p fibrils, although to different extents. The spectral quality is surprising in the light of existing structural models for Ure2p and in comparison to the corresponding spectra of the only other full-length prion fibrils (HET-s) investigated so far. This opens the exciting perspective of an atomic-resolution structure determination of the fibrillar form of a prion whose assembly is not accompanied by significant conformational changes and documents the structural diversity underlying prion propagation.  相似文献   

14.
The soluble protein Ure2p from the yeast Saccharomyces cerevisiae assembles in vitro into straight and insoluble protein fibrils, through subtle changes of conformation. Whereas the structure of soluble Ure2p has been revealed by X-ray crystallography, further characterization of the structure of insoluble Ure2p fibrils is needed. We performed X-ray absorption near-edge spectroscopy (XANES) at the sulfur K-edge to probe the state of Cys221 in the fibrillar form of Ure2pC221 and provide structural information on the structure of Ure2p within fibrils. Although the Ure2p dimer dissociation into its constituent monomers has proven to be a prerequisite for assembly into fibrils, we showed the ability of every Ure2pC221 monomer to establish disulfide bonds upon incubation of the fibrils under oxidizing conditions. Our result indicates either that the constituent unit of the fibrillar form of the protein is a dimeric Ure2p or that the fibrils are made of protofilaments assembled in such a way that the residue C221 from a Ure2p molecule in one protofilament is located in the vicinity of a C221 residue from another molecule belonging to a neighbor protofilament.  相似文献   

15.
The [URE3] phenotype in Saccharomyces cerevisiae is caused by the inactive, altered (prion) form of the Ure2 protein (Ure2p), a regulator of nitrogen catabolism. Ure2p has two functional domains: an N-terminal domain necessary and sufficient for prion propagation and a C-terminal domain responsible for nitrogen regulation. We show here that the mRNA encoding Ure2p possesses an IRES (internal ribosome entry site). Internal initiation leads to the synthesis of an N-terminally truncated active form of the protein (amino acids 94-354) lacking the prion-forming domain. Expression of the truncated Ure2p form (94-354) mediated by the IRES element cures yeast cells of the [URE3] phenotype. We assume that the balance between the full-length and truncated (94-354) Ure2p forms plays an important role in yeast cell physiology and differentiation.  相似文献   

16.
The [URE3] prion is an inactive, self-propagating, filamentous form of the Ure2 protein, a regulator of nitrogen catabolism in yeast. The N-terminal "prion" domain of Ure2p determines its in vivo prion properties and in vitro amyloid-forming ability. Here we determined the overall structures of Ure2p filaments and related polymers of the prion domain fused to other globular proteins. Protease digestion of 25-nm diameter Ure2p filaments trimmed them to 4-nm filaments, which mass spectrometry showed to be composed of prion domain fragments, primarily residues approximately 1-70. Fusion protein filaments with diameters of 14-25 nm were also reduced to 4-nm filaments by proteolysis. The prion domain transforms from the most to the least protease-sensitive part upon filament formation in each case, implying that it undergoes a conformational change. Intact filaments imaged by cryo-electron microscopy or after vanadate staining by scanning transmission electron microscopy (STEM) revealed a central 4-nm core with attached globular appendages. STEM mass per unit length measurements of unstained filaments yielded 1 monomer per 0.45 nm in each case. These observations strongly support a unifying model whereby subunits in Ure2p filaments, as well as in fusion protein filaments, are connected by interactions between their prion domains, which form a 4-nm amyloid filament backbone, surrounded by the corresponding C-terminal moieties.  相似文献   

17.

Background

The aggregation of the baker''s yeast prion Ure2p is at the origin of the [URE3] trait. The Q- and N-rich N-terminal part of the protein is believed to drive Ure2p assembly into fibrils of amyloid nature and the fibrillar forms of full-length Ure2p and its N-terminal part generated in vitro have been shown to induce [URE3] occurrence when introduced into yeast cells. This has led to the view that the fibrillar form of the N-terminal part of the protein is sufficient for the recruitment of constitutive Ure2p and that it imprints its amyloid structure to full-length Ure2p.

Results

Here we generate a set of Ure2p N-terminal fragments, document their assembly and structural properties and compare them to that of full-length Ure2p. We identify the minimal region critical for the assembly of Ure2p N-terminal part into amyloids and show that such fibrils are unable to seed the assembly of full length Ure2p unlike fibrils made of intact Ure2p.

Conclusion

Our results clearly indicate that fibrillar Ure2p shares no structural similarities with the amyloid fibrils made of Ure2p N-terminal part. Our results further suggest that the induction of [URE3] by fibrils made of full-length Ure2p is likely the consequence of fibrils growth by depletion of cytosolic Ure2p while it is the consequence of de novo formation of prion particles following, for example, titration within the cells of a specific set of molecular chaperones when fibrils made of Ure2p N-terminal domain are introduced within the cytoplasm.  相似文献   

18.
The protein Ure2 from the yeast Saccharomyces cerevisiae has prion properties. It assembles in vitro into long, straight, insoluble fibrils that are similar to amyloids in that they bind Congo Red and show green-yellow birefringence and have an increased resistance to proteolysis. We recently showed that Ure2p fibrils assembled under physiologically relevant conditions are devoid of a cross-beta-core. A model for fibril formation, where assembly is driven by non-native inter- and/or intramolecular interaction between Ure2p monomers following subtle conformational changes was proposed [Bousset et al. (2002) EMBO J. 21, 2903-2911]. An alternative model for the assembly of Ure2p into fibrils where assembly is driven by the stacking of 40-70 N-terminal amino acid residues of Ure2p into a central beta-core running along the fibrils from which the C-terminal domains protrude was proposed [Baxa et al. (2003) J. Biol. Chem. 278, 43717-43727]. We show here that Ure2p fibril congophilia and the associated yellow-green birefringence in polarized light are not indicative that the fibrils are of amyloid nature. We map the structures of the fibrillar and soluble forms of Ure2p using limited proteolysis and identify the reaction products by microsequencing and mass spectrometry. Finally, we demonstrate that the C-terminal domain of Ure2p is tightly involved in the fibrillar scaffold using a sedimentation assay and a variant Ure2p where a highly specific cleavage site between the N- and C-terminal domains of the protein was engineered. Our results are inconsistent with the cross-beta-core model and support the model for Ure2p assembly driven by subtle conformational changes and underline the influence of the natural context of the N-terminal domain on the assembly of Ure2p.  相似文献   

19.
[URE3] is a non-Mendelian genetic element in Saccharomyces cerevisiae, which is caused by a prion-like, autocatalytic conversion of the Ure2 protein (Ure2p) into an inactive form. The presence of [URE3] allows yeast cells to take up ureidosuccinic acid in the presence of ammonia. This phenotype can be used to select for the prion state. We have developed a novel reporter, in which the ADE2 gene is controlled by the DAL5 regulatory region, which allows monitoring of Ure2p function by a colony color phenotype. Using this reporter, we observed induction of different [URE3] prion variants ("strains") following overexpression of the N-terminal Ure2p prion domain (UPD) or full-length Ure2p. Full-length Ure2p induced two types of [URE3]: type A corresponds to conventional [URE3], whereas the novel type B variant is characterized by relatively high residual Ure2p activity and efficient curing by coexpression of low amounts of a UPD-green fluorescent protein fusion protein. Overexpression of UPD induced type B [URE3] but not type A. Both type A and B [URE3] strains, as well as weak and strong isolates of type A, were shown to stably maintain different prion strain characteristics. We suggest that these strain variants result from different modes of aggregation of similar Ure2p monomers. We also demonstrate a procedure to counterselect against the [URE3] state.  相似文献   

20.
The [URE3] phenotype in the yeast Saccharomyces cerevisiae is inherited by a prion mechanism involving self-propagating Ure2p aggregates. It is believed that assembly of intact Ure2p into fibrillar polymers that bind Congo Red and show yellow-green birefringence upon staining and are resistant to proteolysis is the consequence of a major change in the conformation of the protein. We recently dissected the assembly process of Ure2p and showed the protein to retain its native alpha-helical structure upon assembly into protein fibrils that are similar to amyloids in that they are straight, bind Congo red and show green-yellow birefringence and have an increased resistance to proteolysis (). Here we further show using specific ligand binding, FTIR spectroscopy and X-ray fiber diffraction that Ure2p fibrils assembled under physiologically relevant conditions are devoid of a cross-beta core. The X-ray fiber diffraction pattern of these fibrils reveals their well-defined axial supramolecular order. By analyzing the effect of heat-treatment on Ure2p fibrils we bring evidences for a large conformational change that occurs within the fibrils with the loss of the ligand binding capacity, decrease of the alpha helicity, the formation of a cross-beta core and the disappearance of the axial supramolecular order. The extent of the conformational change suggests that it is not limited to the N-terminal part of Ure2p polypeptide chain. We show that the heat-treated fibrils that possess a cross-beta core are unable to propagate their structural characteristic while native-like fibrils are. Finally, the potential evolution of native-like fibrils into amyloid fibrils is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号