首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic control of susceptibility to tuberculosis (TB) is being intensively studied, and immune responses to mycobacteria are considerably well characterized. However, it remains largely unknown which parameters of response distinguish resistant and susceptible TB phenotypes. Mice of I/St and A/Sn inbred strains and (A/Sn x I/St)F(1) hybrids were previously categorized as, respectively, susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. In the present work we compared parameters of lung T cell activation and response following M. tuberculosis challenge. In all mice, the disease progression was accompanied by a marked accumulation in the lungs of activated CD4(+) (CD44(high)/CD45RB(low)) and CD8(+) (CD44(high)/CD45RB(+)) T cells capable of secreting IFN-gamma and of activating macrophages for NO production and mycobacterial growth inhibition. However, significantly more CD8(+) T cells were accumulated in the lungs of resistant A/Sn and F(1) compared with I/St mice. About 80% A/Sn and F(1) CD8(+) cells expressed CD44(high)/CD45RB(+) phenotype, while about 40% I/St CD8(+) cells did not express CD45RB marker at week 5 of infection. In contrast, in susceptible I/St mice lung CD4(+) cells proliferated much more strongly in response to mycobacterial sonicate, and a higher proportion of these cells expressed CD95 and underwent apoptosis compared with A/Sn cells. Unseparated lung cells and T cells of I/St origin produced more IL-5 and IL-10, respectively, whereas their A/Sn and F1 counterparts produced more IFN-gamma following infection. F(1) cells overall expressed an intermediate phenotype between the two parental strains. Such a more balanced type of immune reactivity could be linked to a better TB defense.  相似文献   

2.
3.
4.
Regulation of infection with Histoplasma capsulatum by TNFR1 and -2   总被引:2,自引:0,他引:2  
The concerted action of several cytokines is necessary for resolution of both primary and secondary infection with Histoplasma capsulatum. Among the soluble factors that contribute to tissue sterilization, TNF-alpha stands as a central mediator of protective immunity to this fungus. In this study, we explored the regulation of protective immunity by TNFR1 and -2. In primary pulmonary infection, both TNFR1-/- and -2-/- mice manifested a high mortality after infection with H. capsulatum, although TNFR1-/- mice were more susceptible than TNFR2 -/- mice. Overwhelming infection in the former was associated with a pronounced decrement in the number of inflammatory cells in the lungs and elevated IFN-gamma and TNF-alpha levels in the lungs. In contrast, IFN-gamma levels were markedly decreased in TNFR2-/- mice, and treatment with this cytokine restored protective immunity. Lung macrophages from both groups of knockout mice released substantial amounts of NO. Upon secondary infection, TNFR2-/- mice survived rechallenge and cleared infection as efficiently as C57BL/6 animals. In contrast, mice given mAb to TNFR1 succumbed to reexposure, and the high mortality was accompanied by a significant increase in fungal burden in the lungs. Both IL-4 and IL-10 were elevated in the lungs of these mice. The results demonstrate the pivotal influence of TNFR1 and -2 in controlling primary infection and highlight the differences between these receptors for regulation reexposure histoplasmosis.  相似文献   

5.
The effect of macrophage blockade on the natural resistance and on the adaptative immune response of susceptible (B10.D2/oSn) and resistant (A/Sn) mice toParacoccidioides brasiliensis infection was investigated. B10.D2/oSn and A/Sn mice previously injected with colloidal carbon were infected ip with yeast cells to determine the 50% lethal dose, and to evaluate the anatomy and histopathology, macrophage activation, antibody production and DTH reactions. Macrophage blockade rendered both resistant and susceptible mice considerably more susceptible to infection, as evidenced by increased mortality and many disseminated lesions.P. brasiliensis infection and/or carbon treatment increased the ability of macrophages from resistant mice to spread up to 25 days after treatment. In susceptible mice the enhanced spreading capacity induced by carbon treatment was impaired at all assayed periods except at 1 week after infection. Macrophage blockade enhanced DTH reactions in resistant mice, but did not alter these reactions in susceptible mice, which remained anergic. To the contrary, macrophage blockade enhanced specific antibody production by susceptible mice, but did not affect the low levels produced by resistant mice. The effect of macrophage blockade confirms the natural tendency of resistant animals to mount DTH reactions in the course of the disease and the preferential antibody response developed by susceptible mice afterP. brasiliensis infection. On the whole, macrophage functions appear to play a fundamental role in the natural and acquired resistance mechanisms toP. brasiliensis infection.  相似文献   

6.
We tested the hypothesis that host resistance to Campylobacter jejuni is Nramp1 dependent. Following intraperitoneal (IP) inoculation of Nramp1+/+ and isogenic Nramp1-deficient (Nramp1-/-) mice C. jejuni primarily associated with mac1-positive cells in liver tissue. A significant reduction of C. jejuni was observed in Nramp1+/+ mice 4 days post-infection (PI) (liver) and 8 days PI cecum-colon. In contrast, Nramp1-/- mice showed no significant reduction of C. jejuni and instead had a chronic inflammatory response and significant histopathological lesions 30 days PI. Differential cytokine profiles were observed in C. jejuni infected Nramp1+/+ and Nramp1-/- primary dendritic cells. Taken together these data indicate that Nramp1 is critical for host resistance to C. jejuni.  相似文献   

7.
8.
Secondary pneumococcal pneumonia is a serious complication during and shortly after influenza infection. We established a mouse model to study postinfluenza pneumococcal pneumonia and evaluated the role of IL-10 in host defense against Streptococcus pneumoniae after recovery from influenza infection. C57BL/6 mice were intranasally inoculated with 10 median tissue culture infective doses of influenza A (A/PR/8/34) or PBS (control) on day 0. By day 14 mice had regained their normal body weight and had cleared influenza virus from the lungs, as determined by real-time quantitative PCR. On day 14 after viral infection, mice received 10(4) CFU of S. pneumoniae (serotype 3) intranasally. Mice recovered from influenza infection were highly susceptible to subsequent pneumococcal pneumonia, as reflected by a 100% lethality on day 3 after bacterial infection, whereas control mice showed 17% lethality on day 3 and 83% lethality on day 6 after pneumococcal infection. Furthermore, 1000-fold higher bacterial counts at 48 h after infection with S. pneumoniae and, particularly, 50-fold higher pulmonary levels of IL-10 were observed in influenza-recovered mice than in control mice. Treatment with an anti-IL-10 mAb 1 h before bacterial inoculation resulted in reduced bacterial outgrowth and markedly reduced lethality during secondary bacterial pneumonia compared with those in IgG1 control mice. In conclusion, mild self-limiting influenza A infection renders normal immunocompetent mice highly susceptible to pneumococcal pneumonia. This increased susceptibility to secondary bacterial pneumonia is at least in part caused by excessive IL-10 production and reduced neutrophil function in the lungs.  相似文献   

9.
Woo H  Okamoto S  Guiney D  Gunn JS  Fierer J 《PloS one》2008,3(2):e1603
BACKGROUND: Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1(G169D) allele) die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1(G169)) with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2(Nramp1) congenic started losing weight 5 days post-infection and they began to die from colitis 10-14 days after infection. A SPI-1 (invA) mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPH-deficient (gp91(phox)) mice. However, strain 14028s caused severe colitis and diarrhea in gp91(phox)-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. CONCLUSIONS: S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore, a Salmonella phoP mutant can be cleared from the colon by non-oxidative host defenses.  相似文献   

10.
It is well established that resistance or susceptibility to Paracoccidioidis brasiliensis infection in mice is under strict host's genetic control. Mice from A/Sn strain inoculated by the ip route are resistant to fungal infection while infection induced in mice from B10.A strain results in a fatal disease. The early cellular events of infection in both strains are characterized by a marked neutrophilic infiltration that is more prominent in B10.A mice. A peculiar characteristic of the Paracoccidioides brasiliensis-mouse model is that the subcutaneous (sc) inoculations of the fungus either in resistant (A/Sn) or susceptible (B10.A) mice is self-curing and turns mice from the B10.A strain able to express typical DTH reaction to fungal antigens, as observed in A/Sn mice. Here we report the investigation on the early events of the inflammatory response induced by the inoculation of live fungus into the hind footpad of A/Sn (resistant) and B10.A (susceptible) mice. The influence of neutrophils on the inflammatory response and antibody titers or DTH response to gp43, the major fungal antigen, was also evaluated. Results showed a different course of the inflammatory response induced by fungal inoculation in A/Sn and B10.A mice. Neutrophil depletion before infection differently influenced the kinetics of the inflammatory process in both mice strains but did not modifythe fungal load in the lesions. In neutrophil depleted mice from both strains, a decrease in DTH response and an increase in total antibody titers to gp43 were observed. The significant increase in the fungal load in lesions seen in nude mice indicates that the self-limited infection evoked by fungal inoculation into the subcutaneous tissue is a T-cell dependent phenomenon. The implications of these observations in the pathogenesis of paracoccidioidomycosis are discussed.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
Abstract Susceptibility to Salmonella typhimurium infection was compared in H (high Ab responder) and L (low Ab responder) mice obtained by several selective breeding experiments (Selections I, II, III, IV and IV A) [10,19,22]. H mice were always much more susceptible to infection than their L mice counterparts within a continuous LD 50 variation range. In three of the selections (I, II and IV A) the low responsiveness character is known to result mainly from rapid Ag degradation in L mice macrophages. It was hypothesized that resistance to multiplication of intracellular pathogens could be related to an increased catabolic activity towards Ag. This was actually demonstrated, in F2 segregant hybrids of selection IV A, by the significant inverse correlation between capacity for Ab production and resistance to infection.  相似文献   

12.
One of genetic loci involved in tuberculosis (TB) infection control in mice is located within the segment of Chr. 17 occupied by the H2 complex, the mouse MHC. As far as this region includes approximately 40 Mb and contains hundreds of genes affecting immune responses and host-parasite interactions, narrowing the interval by genetic recombination is pre-requisite for identification of particular gene(s). We have developed a panel of recombinant congenic strains bearing different parts of the H2 complex from TB-susceptible I/St mice on the genetic background of TB-resistant C57BL/6 mice. By superposing the phenotype "severe vs. mild infectious course" against the chart of alleles inherited by these new strains from the two parental strains, we have mapped a locus involved in TB control within the segment 33.305-34.479 Mb (-1.1 Mb) of the Chr. 17. Such a location indicates that allelic variants of the prominent pro-inflammatory factor TNF do not affect TB course in our experimental system. This result was confirmed by the assessment of the TNF level in the lung tissue of infected mice of different strains. The QTL (quantitative trait locus) mapped in our study influences several important parameters of TB infection: multiplication of mycobacteria in the lungs, severity of lung pathology and regulation of the early inflammatory response.  相似文献   

13.
Clara cell secretory protein (CCSP) has been shown to have anti-inflammatory and immunomodulatory functions in the lung. Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and young children. RSV usually infects small airways and likely interacts with the Clara cells of bronchioles. To determine a possible role for CCSP during acute RSV infection, CCSP-deficient (CCSP(-/-)) and wild-type (WT) mice were intratracheally infected with RSV and the lung inflammatory and immune responses to RSV infection were assessed. RSV-F gene expression was increased in the lungs of CCSP(-/-) mice as compared with WT mice following RSV infection, consistent with increased viral persistence. Lung inflammation was significantly increased in CCSP(-/-) mice as compared with WT mice after infection. Moreover, although the levels of Th1 cytokines were similar, the levels of Th2 cytokines and neutrophil chemokines were increased in the lungs of CCSP(-/-) mice following infection. Physiologic endpoints of exacerbated lung disease, specifically airway reactivity and mucus production, were increased in CCSP(-/-) mice after RSV infection. Importantly, restoration of CCSP in the airways of CCSP(-/-) mice abrogated the increased viral persistence, lung inflammation, and airway reactivity. These findings suggest a role for CCSP and Clara cells in regulating lung inflammatory and immune responses to RSV infection.  相似文献   

14.
Host resistance against Salmonella enterica serovar Typhimurium ( S . Typhimurium) is mediated by natural resistance-associated macrophage protein 1 (Nramp1/Slc11a1). Nramp1 is critical to host defence, as mice lacking Nramp1 fail to control bacterial replication and succumb to low doses of S . Typhimurium. Despite this crucial role, the mechanisms underlying Nramp1's protective effects are unclear. Dendritic cells (DCs) that sample the intestinal lumen are among the first cells encountered by S. Typhimurium following oral infection and act as a conduit for S. Typhimurium to cross the intestinal epithelial barrier. We report that DCs, including intestinal, splenic and bone marrow-derived DCs (BMDCs), express Nramp1 protein. In the small intestine, Nramp1 expression is greater in a subset of DCs (CD11c+CD103-) characterized by the elevated expression of pro-inflammatory cytokines in response to bacterial products. While Nramp1 expression did not affect S. Typhimurium replication in BMDCs, infected Nramp1+/+ BMDCs and intestinal CD11c+CD103- DCs secreted more inflammatory cytokines (IL-6, IL-12 and TNF-α) than Nramp1−/−, suggesting that Nramp1 expression may promote a more rapid inflammatory response following infection. Collectively, these findings reveal a new role for DCs and Nramp1 in modulating the host inflammatory response to S. Typhimurium.  相似文献   

15.
Susceptibility to Salmonella typhimurium infection was compared in H (high Ab responder) and L (low Ab responder) mice obtained by several selective breeding experiments (Selections I, II, III, IV and IV A). H mice were always much more susceptible to infection than their L mice counterparts within a continuous LD 50 variation range. In three of the selections (I, II and IV A) the low responsiveness character is known to result mainly from rapid Ag degradation in L mice macrophages. It was hypothesized that resistance to multiplication of intracellular pathogens could be related to an increased catabolic activity towards Ag. This was actually demonstrated, in F2 segregant hybrids of selection IV A, by the significant inverse correlation between capacity for Ab production and resistance to infection.  相似文献   

16.
The effect of various amounts of dietary iron on the immune response was investigated using BALB/cAnNCr/BR mice infected with Ascaris suum. Changes in numbers of larvae, numbers of eosinophils, and levels of lysophospholipase (LPL) activity in lung or liver tissues were analyzed from nonimmune and immunized mice at 2 and 7 days postinfection (PI). Various iron diets did not influence the numbers of tissue larvae, eosinophils, or the LPL activity in lungs or livers of nonimmunized mice at various times after infection. Lung and liver LPL activity was reduced in immunized mice without significant changes in larval numbers at 2 days PI. At 7 days PI, lung and liver LPL activity, eosinophil numbers, and numbers of larvae were increased in immunized mice receiving low iron diets. Results confirm that low iron diets affect the host response to A. suum.  相似文献   

17.
To determine roles of MHC class I and II genes in protection against Toxoplasma gondii, H-2 congenic and mutant mice were infected perorally with bradyzoites of T. gondii and brain cysts were enumerated 30 days later. As B10 mice (H-2b) are cyst susceptible and B10.A mice (H-2a) are cyst resistant, B10 congenic mice having the same alleles but different H-2 haplotypes were used to locate the controlling gene. Genes located at H-2L (i.e., class I genes) were found to regulate the number of brain cysts which form following peroral infection with T. gondii (p less than 0.001) with Ld being resistant and Lb being susceptible. The regulatory function of the H-2L gene product was confirmed through the study of D mutant (dm) mice. B10.D2-H-2dm1 (dm1) mice have a gain-loss mutation in Dd and Ld (i.e., recombination of Ld and Dd) and BALB/c-H-2dm2 (dm2) mice have a deletion of the Ld gene. Both these dm strains were cyst susceptible (p less than 0.001). These results provide the first direct evidence that class I genes regulate numbers of T. gondii cysts that form. In vivo ablation of CD8+ T cells with mAb YTS 169.4 converted cyst resistant B10.BAR12 mice to cyst susceptible. This result is consistent with a role for MHC restricted CD8+ cytotoxic (or suppressor) T cell regulation of cyst formation. A mutation in Ia in B6.C-H-2bm12 (bm12) mice amplified cyst numbers in susceptible mice, which is consistent with the importance of helper/inducer T cells in the induction of cytotoxic T cells. These findings are relevant to understanding the complex immunologic mechanisms that protect against T. gondii infection, development of protective preparations, and provide a conceptual basis for determining whether similar immunogenetic regulation of susceptibility is also operative in humans.  相似文献   

18.
Using a murine model of susceptibility and resistance to paracoccidioidomycosis, we have previously demonstrated that immunosuppression occurs in susceptible (B10.A), but not in resistant (A/Sn), mouse strains. Accumulating evidence shows that NO is involved in the induction of T cell immunosuppression during infection as well as in the killing of Paracoccidioides brasiliensis. In the present work, we focused on NO and other macrophage products that could be associated with resistance or susceptibility to paracoccidioidomycosis. A striking difference was related to NO and TNF production. Macrophages from B10.A mice produced high and persistent NO levels, while in A/Sn animals, TNF production predominated. In in vitro cultures, P. brasiliensis-infected macrophages from A/Sn mice also produced large amounts of TNF, while B10.A macrophages only produced NO. TNF production by B10.A macrophages appeared to be suppressed by NO, because the addition of aminoguanidine sulfate, an inducible NO synthase (NOS2) inhibitor, resulted in TNF production. These results suggested that enhanced TNF or NO production is associated with resistance and susceptibility, respectively. However, regardless of the mouse strain, NOS2-deficient or aminoguanidine sulfate-treated mice presented extensive tissue lesions with increased fungal load in lungs and liver compared with their controls. We conclude that NOS2-derived NO is essential for resistance to paracoccidioidomycosis, but overproduction is associated with susceptibility.  相似文献   

19.
Coxiella burnetii, the causative agent of Q fever, is a zoonotic disease with potentially life-threatening complications in humans. Inhalation of low doses of Coxiella bacteria can result in infection of the host alveolar macrophage (AM). However, it is not known whether a subset of AMs within the heterogeneous population of macrophages in the infected lung is particularly susceptible to infection. We have found that lower doses of both phase I and phase II Nine Mile C. burnetii multiply and are less readily cleared from the lungs of mice compared to higher infectious doses. We have additionally identified AM resident within the lung prior to and shortly following infection, opposed to newly recruited monocytes entering the lung during infection, as being most susceptible to infection. These resident cells remain infected up to twelve days after the onset of infection, serving as a permissive niche for the maintenance of bacterial infection. A subset of infected resident AMs undergo a distinguishing phenotypic change during the progression of infection exhibiting an increase in surface integrin CD11b expression and continued expression of the surface integrin CD11c. The low rate of phase I and II Nine Mile C. burnetii growth in murine lungs may be a direct result of the limited size of the susceptible resident AM cell population.  相似文献   

20.
One of the genetic loci involved in tuberculosis (TB) infection control in mice is located within the chromosome 17 segment occupied by the H2 complex, the mouse MHC. Since this region spans approximately 40 Mb and contains hundreds of genes affecting immune response and host-parasite interactions, narrowing the interval by genetic recombination is necessary for identification of individual gene(s) involved. We have developed a panel of recombinant congenic mouse strains bearing different parts of the H2 complex from TB-susceptible I/St mice on the genetic background of TB-resistant C57BL/6 mice. By superposing the phenotype of severe or mild TB course against the chart of alleles inherited by these new strains from the two parental strains, a locus involved in TB control was mapped within the segment 33.305–34.479 Mb (∼1.1 Mb) of chromosome 17. Such a location indicates that allelic variants of an important proinflammatory factor TNF do not affect TB course in our experimental system. This result was confirmed by assessment of the TNF level in the lung tissue of infected mice of different strains. The QTL (quantitative trait locus) mapped in our study influences several important parameters of TB infection: mycobacterial multiplication in the lungs, severity of lung pathology, and regulation of early inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号