首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
丹参的冠瘿组织培养和丹参酮的产生   总被引:14,自引:1,他引:14  
用根癌农杆菌感染丹参无菌苗获得冠瘿组织,除菌后的冠瘿组织在无激素的Ms培养基上生长良好。经高压纸电泳检查,冠瘿组织中含有冠痿碱,证实根癌农杆菌的Ti质粒转化成功。冠瘿组织的生长和丹参酮的积累与基本培养基有关,B5和Ms培养基有利于生长.月增殖倍数分别达到102倍和90倍,而67-V和WP培养基则有利于丹参酮的合成,在培养过程中丹参酮能分泌到培养液中。研究表明用冠瘿组织作为培养系统,生产药用植物有效成分具有良好的开发前景。  相似文献   

3.
寡糖素对丹参发根发生和丹参酮合成的影响   总被引:1,自引:0,他引:1  
从不同来源的真菌材料中制备诱导子,用它们刺激丹参发根,分别研究了不同浓度的串珠镰孢菌寡糖素对发根生长和不同的酵母诱导物对总丹参酮合成的影响。结果表明,除酵母提取液的酒精沉淀物以外,所有的真菌诱导物普遍引起丹参发根根尖不同程度地膨大。另外串珠镰孢菌寡糖素能显著促进发根生长,其中以50ms/L的诱导浓度效果最明显,与对照相比。丹参发根生物量增加了50.46%;酵母诱导物不同程度地促进发根丹参酮的合成,其中以商品酵母粉酒精沉淀物作用最强,确定酵母诱导物对丹参发根的主要有效成分是低聚糖。  相似文献   

4.
Mechanical stimulation of plants triggers a cytoplasmic Ca2+ increase that is thought to link the touch stimulus to appropriate growth responses. We found that in roots of Arabidopsis thaliana, external and endogenously generated mechanical forces consistently trigger rapid and transient increases in cytosolic Ca2+ and that the signatures of these Ca2+ transients are stimulus specific. Mechanical stimulation likewise elicited an apoplastic alkalinization and cytoplasmic acidification as well as apoplastic reactive oxygen species (ROS) production. These responses showed the same kinetics as mechanically induced Ca2+ transients and could be elicited in the absence of a mechanical stimulus by artificially increasing Ca2+ concentrations. Both pH changes and ROS production were inhibited by pretreatment with a Ca2+ channel blocker, which also inhibited mechanically induced elevations in cytosolic Ca2+. In trichoblasts of the Arabidopsis root hair defective2 mutant, which lacks a functional NADPH oxidase RBOH C, touch stimulation still triggered pH changes but not the local increase in ROS production seen in wild-type plants. Thus, mechanical stimulation likely elicits Ca2+-dependent activation of RBOH C, resulting in ROS production to the cell wall. This ROS production appears to be coordinated with intra- and extracellular pH changes through the same mechanically induced cytosolic Ca2+ transient.  相似文献   

5.
Yang D  Ma P  Liang X  Wei Z  Liang Z  Liu Y  Liu F 《Physiologia plantarum》2012,146(2):173-183
Tanshinones, a group of active ingredients in Salvia miltiorrhiza, are derived from at least two biosynthetic pathways, which are the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Abscisic acid (ABA) and methyl jasmonate (MJ) are two well-known plant hormones induced by water stress. In this study, effects of polyethylene glycol (PEG), ABA and MJ on tanshinone production in S. miltiorrhiza hairy roots were investigated, and the role of MJ in PEG- and ABA-induced tanshinone production was further elucidated. The results showed that tanshinone production was significantly enhanced by treatments with PEG, ABA and MJ. The mRNA levels of 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS), as well as the enzyme activities of HMGR and DXS were stimulated by all three treatments. PEG and ABA triggered MJ accumulation. Effects of PEG and ABA on tanshinone production were completely abolished by the ABA biosynthesis inhibitor [tungstate (TUN)] and the MJ biosynthesis inhibitor [ibuprofen (IBU)], while effects of MJ were almost unaffected by TUN. In addition, MJ-induced tanshinone production was completely abolished by the MEP pathway inhibitor [fosmidomycin (FOS)], but was just partially arrested by the MVA pathway inhibitor [mevinolin (MEV)]. In conclusion, a signal transduction model was proposed that exogenous applications of PEG and ABA triggered endogenous MJ accumulation by activating ABA signaling pathway to stimulate tanshinone production, while exogenous MJ could directly induce tanshinone production mainly via the MEP pathway in S. miltiorrhiza hairy roots.  相似文献   

6.
Salvia miltiorrhiza Bunge (Lamiaceae) root, generally called Danshen, is an important herb in Chinese medicine widely used for treatment of cardiovascular diseases. Diterpenoid tanshinons are major bioactive constituents of Danshen with notable pharmacological activities and the potential as new drug candidates against some important human diseases. The importance of Danshen for traditional and modern medicines has motivated the research interest over two decades in the biosynthesis and biotechnological production of tanshinones. Although diterpenes in plants are presumably derived from the non-mevalonate (MVA) pathway, tanshinone biosynthesis in S. miltiorrhiza may also depend on the MVA pathway based on some key enzymes and genes detected in the early steps of these pathways. Plant tissue cultures are the major biotechnological processes for rapid production of tanshinones and other bioactive compounds in the herb. Various in vitro cultures of S. miltiorrhiza have been established, including cell suspension, adventitious root, and hairy root cultures, which can accumulate the major tanshinones as in the plant roots. Tanshinone production in cell and hairy root cultures has been dramatically enhanced with various strategies, including medium optimization, elicitor stimulation, and nutrient feeding operations. This review will summarize the above developments and also provide our views on future trends.  相似文献   

7.
8.
植物中活性氧的产生及清除机制   总被引:145,自引:1,他引:145  
环境胁迫使植物细胞中积累大量的活性氧,从而导致蛋白质、膜脂、DNA及其它细胞组分的严重损伤。植物体内有效清除活性氧的保护机制分为酶促和非酶促两类。酶促脱毒系统包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)等。非酶类抗氧化剂包括抗坏血酸、谷胱甘肽、甘露醇和类黄酮。利用基因工程策略增加这些物质在植物体内的含量,从而获得耐逆转基因植物已取得一定的进展。  相似文献   

9.
10.
This work was focused on distinguishing the contribution of mitochondrial redox complexesto the production of reactive oxygen species (ROS) during cellular respiration. We were ableto accurately measure, for the first time, the basal production of ROS under uncoupled conditionsby using a very sensitive method, based on the fluorescent probe dichlorodihydrofluoresceindiacetate. The method also enabled the detection of the ROS generated by the oxidation ofthe endogenous substrates in the mitochondrial preparations and could be applied to bothmitochondria and live cells. Contrary to the commonly accepted view that complex III(ubiquinol:cytochrome c reductase) is the major contributor to mitochondrial ROS production, wefound that complex I (NADH-ubiquinone reductase) and complex II (succinate-ubiquinonereductase) are the predominant generators of ROS during prolonged respiration under uncoupledconditions. Complex II, in particular, appears to contribute to the basal production of ROSin cells.  相似文献   

11.
Neuropathic pain occurs as a result of peripheral or central nervous system injury. Its pathophysiology involves mainly a central sensitization mechanism that may be correlated to many molecules acting in regions involved in pain processing, such as the spinal cord. It has been demonstrated that reactive oxygen species (ROS) and signaling molecules, such as the serine/threonine protein kinase Akt, are involved in neuropathic pain mechanisms. Thus, the aim of this study was to provide evidence of this relationship. Sciatic nerve transection (SNT) was used to induce neuropathic pain in rats. Western blot analysis of Akt and 4-hydroxy-2-nonenal (HNE)-Michael adducts, and measurement of hydrogen peroxide (H2O2) in the lumbosacral spinal cord were performed. The main findings were found seven days after SNT, when there was an increase in HNE-Michael adducts formation, total and p-Akt expression, and H2O2 concentration. However, one and 15 days after SNT, H2O2 concentration was raised in both sham (animals that were submitted to surgery without nerve injury) and SNT groups, showing the high sensibility of this ROS to nociceptive afferent stimuli, not only to neuropathic pain. p-Akt also increased in sham and SNT groups one day post injury, but at 3 and 7 days the increase occurred exclusively in SNT animals. Thus, there is crosstalk between intracellular signaling pathways and ROS, and these molecules can act as protective agents in acute pain situations or play a role in the development of chronic pain states.  相似文献   

12.
A central question in biology is how spatial information is conveyed to locally establish a developmental program. Rice (Oryza sativa) can survive flash floods by the emergence of adventitious roots from the stem. Epidermal cells that overlie adventitious root primordia undergo cell death to facilitate root emergence. Root growth and epidermal cell death are both controlled by ethylene. This study aimed to identify the signal responsible for the spatial control of cell death. Epidermal cell death correlated with the proximity to root primordia in wild-type and ADVENTITIOUS ROOTLESS1 plants, indicating that the root emits a spatial signal. Ethylene-induced root growth generated a mechanical force of ∼18 millinewtons within 1 h. Force application to epidermal cells above root primordia caused cell death in a dose-dependent manner and was inhibited by 1-methylcyclopropene or diphenylene iodonium, an inhibitor of NADPH oxidase. Exposure of epidermal cells not overlying a root to either force and ethylene or force and the catalase inhibitor aminotriazole induced ectopic cell death. Genetic downregulation of the reactive oxygen species (ROS) scavenger METALLOTHIONEIN2b likewise promoted force-induced ectopic cell death. Hence, reprogramming of epidermal cell fate by the volatile plant hormone ethylene requires two signals: mechanosensing for spatial resolution and ROS for cell death signaling.  相似文献   

13.
丹参的药用资源研究进展   总被引:9,自引:0,他引:9  
本文对丹参的药用资源及分布、化学成分、药理作用及制剂等的近期研究成果及其开发前景作了综述。  相似文献   

14.
Reactive oxygen species include a number of molecules that damage DNA and RNA and oxidize proteins and lipids (lipid peroxydation). These reactive molecules contain an oxygen and include H2O2 (hydrogen peroxide), NO (nitric oxide), O2- (oxide anion), peroxynitrite (ONOO-), hydrochlorous acid (HOCl), and hydroxyl radical (OH-).Oxidative species are produced not only under pathological situations (cancers, ischemic/reperfusion, neurologic and cardiovascular pathologies, infectious diseases, inflammatory diseases 1, autoimmune diseases 2, etc…) but also during physiological (non-pathological) situations such as cellular metabolism 3, 4. Indeed, ROS play important roles in many cellular signaling pathways (proliferation, cell activation 5, 6, migration 7 etc..). ROS can be detrimental (it is then referred to as "oxidative and nitrosative stress") when produced in high amounts in the intracellular compartments and cells generally respond to ROS by upregulating antioxidants such as superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) that protects them by converting dangerous free radicals to harmless molecules (i.e. water). Vitamins C and E have also been described as ROS scavengers (antioxidants).Free radicals are beneficial in low amounts 3. Macrophage and neutrophils-mediated immune responses involve the production and release of NO, which inhibits viruses, pathogens and tumor proliferation 8. NO also reacts with other ROS and thus, also has a role as a detoxifier (ROS scavenger). Finally NO acts on vessels to regulate blood flow which is important for the adaptation of muscle to prolonged exercise 9, 10. Several publications have also demonstrated that ROS are involved in insulin sensitivity 11, 12.Numerous methods to evaluate ROS production are available. In this article we propose several simple, fast, and affordable assays; these assays have been validated by many publications and are routinely used to detect ROS or its effects in mammalian cells. While some of these assays detect multiple ROS, others detect only a single ROS.Download video file.(43M, mov)  相似文献   

15.
Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation of mitochondrial metabolism under most conditions, root tissues often suffer oxygen deprivation during normal development due to the lack of an endogenous supply and isolation from atmospheric oxygen.  相似文献   

16.
Summary Tanshinone IIA, a major component extracted from the traditional herbal medicine, Salvia miltiorrhiza Bunge, is known to exhibit potent cytotoxicity against various human carcinoma cells in vitro. However, the mechanism by which tanshinone IIA produces this anti-tumor effect remains unknown. Since anti-neovascularization has generally been regarded as an effective strategy for anti-cancer therapy, we decided to investigate the mechanism underlying tanshinone IIA-mediated death of human endothelial cells. In this study, we demonstrate that tanshinone IIA elicits human endothelial cell death independent of oxidative stress. These events are partially calcium-dependent and actually dependent upon NAD(P)H: quinone oxidoreductase (NQO1) activity. Tanshinone IIA induces an increase in intracellular calcium, which triggers the release of cytochrome c, thus causing loss of the mitochondrial membrane potential (MMP), resulting in the subsequent activation of caspases. Blocking the induction of Ca2+ perturbation with BAPTA-AM partially rescued cells from tanshinone IIA-induced cytotoxicity. Additionally, blocking NQO1 activity with dicoumoral or inhibiting caspase activities with the general caspase inhibitor, z-VAD-fmk, prevented cell death induced by tanshinone IIA. Therefore, our results imply that tanshinone IIA-mediated cytotoxicity against human endothelial cells may occur through activation of NQO1, which induces a calcium imbalance and mitochondrial dysfunction, thus stimulating caspase activity.These authors contributed equally to this work.  相似文献   

17.
Aluminium stress induces peroxidation of lipids in the plasma membrane, the effect akin to that caused by reactive oxygen species (ROS). ROS have recently been proposed as regulators of redox-dependent ion transport across the plasma membrane during biotic and abiotic stresses, thus contributing to the plant defence system. The aim of this study was to discover whether ROS production is linked to redox-dependent H+ transport system located at the plasma membranes of two near-isogenic lines of wheat (Triticum aestivum L., ET8 = Al-resistant, ES8 = Al-sensitive).The activities of NADPH-dependent ROS synthase and SOD were increased in both wheat lines 15 and 30 min after Al treatments. However, the ROS production was also increased under acidic stress. There was no difference between the two wheat lines in the root-cell plasma membrane capacity to efflux H+ in response to potassium ferricyanide after Al and acidic treatments. In ET8, both stresses led to increases in ROS production and H+ influx.ROS production in wheat seedlings was activated primarily by low pH exposure rather than by the Al stress. ROS production and breakdown in wheat seedlings under Al and acidic stresses appear to be linked to the intracellular metabolic changes rather than to the increased activity of plasma membrane-based NADPH-dependent ROS synthase.Key Words: ion fluxes, reactive oxygen species (ROS), redox system, superoxide dismutase (SOD), Triticum aestivum L., wheat  相似文献   

18.
19.
Francisella tularensis is the etiologic agent of the highly infectious animal and human disease tularemia. Its extreme infectivity and virulence are associated with its ability to evade immune detection, which we now link to its robust reactive oxygen species-scavenging capacity. Infection of primary human monocyte-derived macrophages with virulent F. tularensis SchuS4 prevented proinflammatory cytokine production in the presence or absence of IFN-γ compared with infection with the attenuated live vaccine strain. SchuS4 infection also blocked signals required for macrophage cytokine production, including Akt phosphorylation, IκBα degradation, and NF-κB nuclear localization and activation. Concomitant with SchuS4-mediated suppression of Akt phosphorylation was an increase in the levels of the Akt antagonist PTEN. Moreover, SchuS4 prevented the H2O2-dependent oxidative inactivation of PTEN compared with a virulent live vaccine strain. Mutation of catalase (katG) sensitized F. tularensis to H2O2 and enhanced PTEN oxidation, Akt phosphorylation, NF-κB activation, and inflammatory cytokine production. Together, these findings suggest a novel role for bacterial antioxidants in restricting macrophage activation through their ability to preserve phosphatases that temper kinase signaling and proinflammatory cytokine production.  相似文献   

20.
Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号