首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
The shift from straw incorporation to biofuel production entails emissions from production, changes in soil organic carbon (SOC) and through the provision of (co‐)products and entailed displacement effects. This paper analyses changes in greenhouse gas (GHG) emissions arising from the shift from straw incorporation to biomethane and bioethanol production. The biomethane concept comprises comminution, anaerobic digestion and amine washing. It additionally provides an organic fertilizer. Bioethanol production comprises energetic use of lignin, steam explosion, enzymatic hydrolysis and co‐fermentation. Additionally, feed is provided. A detailed consequential GHG balance with in‐depth focus on the time dependency of emissions is conducted: (a) the change in the atmospheric load of emissions arising from the change in the temporal occurrence of emissions comparing two steady states (before the shift and once a new steady state has established); and (b) the annual change in overall emissions over time starting from the shift are assessed. The shift from straw incorporation to biomethane production results in net changes in GHG emissions of (a) ?979 (?436 to ?1,654) and (b) ?955 (?220 to ?1,623) kg CO2‐eq. per tdry matter straw converted to biomethane (minimum and maximum). The shift to bioethanol production results in net changes of (a) ?409 (?107 to ?610) and (b) ?361 (57 to ?603) kg CO2‐eq. per tdry matter straw converted to bioethanol. If the atmospheric load of emissions arising from different timing of emissions is neglected in case (a), the change in GHG emissions differs by up to 54%. Case (b) reveals carbon payback times of 0 (0–49) and 19 (1–100) years in case of biomethane and bioethanol production, respectively. These results demonstrate that the detailed inclusion of temporal aspects into GHG balances is required to get a comprehensive understanding of changes in GHG emissions induced by the introduction of advanced biofuels from agricultural residues.  相似文献   

2.
An experiment was conducted from May to November in Lake Hampen, Denmark, to study the effect of higher CO2 concentration on the biomass of filamentous algae. Three enclosures (1.5 m diameter) were enriched with free CO2 to ∼10 times atmospheric equilibrium (∼170 μM) and three enclosures were kept at atmospheric equilibrium (∼17 μM). The isoetid Littorella uniflora dominated the vegetation in the enclosures. Low concentrations of nitrate and phosphate in the water were observed, especially in the summer months. During the summer, a high biomass of filamentous algae (dominated by Zygnema sp.) developed in both types of enclosures (18–58 g dry wt. m−2 in July and August), but the biomass of algae was significantly higher (1.9–38 times) in the CO2 enriched enclosures than in enclosures with low CO2 concentration. L. uniflora biomass, especially leaf biomass, also showed a significant positive response to increased CO2 concentration (75.0 ± 10.4 and 133.3 ± 42.5 g dry wt. m−2 at low and high CO2 concentrations, respectively) even though the massive filamentous algal growth decreased the light intensity. Both filamentous algae (in August) and L. uniflora showed lower tissue concentrations of N and P at high CO2 concentration.  相似文献   

3.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

4.
A life cycle assessment was performed to quantify and compare the energetic and environmental performances of hydrogen from wheat straw (WS-H2), sweet sorghum stalk (SSS-H2), and steam potato peels (SPP-H2). Inventory data were derived from a pilot plant. Impacts were assessed using the impact 2002+ method. When co-product was not considered, the greenhouse gas (GHG) emissions were 5.60 kg CO2eq kg−1 H2 for WS-H2, 5.32 kg CO2eq kg−1 H2 for SSS-H2, and 5.18 kg CO2eq kg−1 H2 for SPP-H2. BioH2 pathways reduced GHG emissions by 52-56% compared to diesel and by 54-57% compared to steam methane reforming production of H2. The energy ratios (ER) were also comparable: 1.08 for WS-H2, 1.14 for SSS-H2 and 1.17 for SPP-H2. A shift from SPP-H2 to WS-H2 would therefore not affect the ER and GHG emissions of these BioH2 pathways. When co-product was considered, a shift from SPP-H2 to WS-H2 or SSS-H2 decreased the ER, while increasing the GHG emissions significantly. Co-product yield should be considered when selecting BioH2 feedstocks.  相似文献   

5.
This study aims to estimate the three greenhouse gas (GHG) emissions (i.e. CO2, CH4, N2O) from a vertical subsurface flow constructed wetland (VSSF CW, 1000 m2) and a cluster of conventional wastewater treatment plants (WWTPs) in the city of Changzhou, China. The two estimated emissions are set up for comparison. The results show that the WWTP system emits 7.3 kg CO2-eq to remove 1 kg BOD in the studied life cycle, while the VSSF system only emits 3.18 kg CO2-eq, which is only half of the amount given off by the WWTP system. Especially at the treatment stage, the WWTP system's GHG emissions are almost 7 times higher than the VSSF system's. N2O emissions in both systems are only a minor fraction of the total emissions. Therefore, this study has concluded that the VSSF system is an effective option for GHG emissions mitigation in the wastewater sector. The study further suggests that developing countries like China should extensively build up VSSF systems for decentralized wastewater treatment, which could also potentially reduce GHG emissions by 8-17 million ton CO2-eq per year compared with the centralized scenario.  相似文献   

6.
To understand the potential of cultivating Botryococcus braunii with flue gas (normally containing high CO2) for biofuel production, growth characteristics of B. braunii 765 with 2-20% CO2 aeration were investigated. The results showed that the strain could grow well without any obvious inhibition under all tested CO2 concentrations with an aeration rate of 0.2 vvm, even without any culture pH adjustment (ranged from 6.0 to 8.0). The maximum biomass among all conditions was 2.31 g L−1 on 25th day at 20% CO2. Hydrocarbon content and algal colony size increased with the increase of CO2 concentration. A negative correlation between algal biomass and culture total phosphorus was observed (from −0.828 to −0.911, < 0.01). Additionally, 2% sodium hypochlorite solution was used for photobioreactor sterilization to cultivate B. braunii.  相似文献   

7.
Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests   总被引:2,自引:0,他引:2  
We studied greenhouse gas (GHG) fluxes in two differently loaded riparian Alnus incana-dominated forests in agricultural landscapes of southern Estonia: a 33-year-old stand in Porijõgi, in which the uphill agricultural activities had been abandoned since the middle of the 1990s, and a 50-year-old stand in Viiratsi, which still receives polluted lateral flow from uphill fields fertilized with pig slurry. In Porijõgi, closed-chamber based sampling lasted from October 2001 to October 2009, whereas in Viiratsi the sampling period was from November 2003 to October 2009. Both temporal and spatial variations in all GHG gas fluxes were remarkable. Local differences in GHG fluxes between micro-sites (“Edge”, “Dry” and “Wet” in Porijõgi, and “Wet”, “Slope” and “Dry” in Viiratsi) were sometimes greater than those between sites. Median values of GHG fluxes from both sites over the whole study period and all microsites did not differ significantly, being 45 and 42 mg CO2-C m−2 h−1, 8 and 0.5 μg CH4-C m−2 h−1, 1.0 and 2.1 mg N2-N m−2 h−1, and 5 and 9 μg N2O-N m−2 h−1, in Porijõgi and Viiratsi, respectively. The N2:N2O ratio in Viiratsi (40-1200) was lower than in Porijõgi (10-7600). The median values-based estimation of the Global Warming Potential of CH4 and N2O was 19 and 185 kg CO2 equivalents (eq) ha−1 yr−1 in Porijõgi and −14 and 336 kg CO2 eq ha−1 yr−1 in Viiratsi, respectively. A significant Spearman rank correlation was found between the mean monthly air temperature and CO2, CH4 and N2 fluxes in Porijõgi, and N2O flux in Viiratsi, and between the monthly precipitation and CH4 fluxes in both study sites. Higher groundwater level significantly increases CH4 emission and decreases CO2 and N2O emission, whereas higher soil temperature significantly increases N2O, CH4 and N2 emission values. In Porijõgi, GHG emissions did not display any discernable trend, whereas in Viiratsi a significant increase in CO2, N2, and N2O emissions has been found. This may be a result of the age of the grey alder stand, but may also be caused by the long-term nutrient load of this riparian alder stand, which indicates a need for the management of similar heavily loaded riparian alder stands.  相似文献   

8.
Biochar soil amendment (BSA) had been advocated as a promising approach to mitigate greenhouse gas (GHG) emissions in agriculture. However, the net GHG mitigation potential of BSA remained unquantified with regard to the manufacturing process and field application. Carbon footprint (CF) was employed to assess the mitigating potential of BSA by estimating all the direct and indirect GHG emissions in the full life cycles of crop production including production and field application of biochar. Data were obtained from 7 sites (4 sites for paddy rice production and 3 sites for maize production) under a single BSA at 20 t/ha?1 across mainland China. Considering soil organic carbon (SOC) sequestration and GHG emission reduction from syngas recycling, BSA reduced the CFs by 20.37–41.29 t carbon dioxide equivalent ha?1 (CO2‐eq ha?1) and 28.58–39.49 t CO2‐eq ha?1 for paddy rice and maize production, respectively, compared to no biochar application. Without considering SOC sequestration and syngas recycling, the net CF change by BSA was in a range of ?25.06 to 9.82 t CO2‐eq ha?1 and ?20.07 to 5.95 t CO2‐eq ha?1 for paddy rice and maize production, respectively, over no biochar application. As the largest contributors among the others, syngas recycling in the process of biochar manufacture contributed by 47% to total CF reductions under BSA for rice cultivation while SOC sequestration contributed by 57% for maize cultivation. There was a large variability of the CF reductions across the studied sites whether in paddy rice or maize production, due likely to the difference in GHG emission reductions and SOC increments under BSA across the sites. This study emphasized that SOC sequestration should be taken into account the CF calculation of BSA. Improved biochar manufacturing technique could achieve a remarkable carbon sink by recycling the biogas for traditional fossil‐fuel replacement.  相似文献   

9.

Background and aims

Combination of rewetting and wetland crop cultivation (paludiculture) is pursued as a wider carbon dioxide (CO2) mitigation option in drained peatland. However, information on the overall greenhouse gas (GHG) balance for paludiculture is lacking. We investigated the GHG balance of peatlands grown with reed canary grass (RCG) and rewetted to various extents.

Methods

Gas fluxes of CO2, methane (CH4) and nitrous oxide (N2O) were measured with a static chamber technique for 10 months from mesocosms sown with RCG and manipulated to ground water levels (GWL) of 0, ?10, ?20, ?30 and ?40 cm below the soil surface. Gross primary production (GPP) was estimated from the above ground biomass yield.

Results

The mean dry biomass yield across all water table treatments was 6 Mg ha?1 with no significant differences between the treatments. Raising the GWL to the surface decreased both the net ecosystem exchange (NEE) of CO2 and N2O emissions whereas CH4 emissions increased. Total cumulative GHG emissions (for 10 months) corresponded to 0.08, 0.13, 0.61, 0.68 and 0.98 kg CO2 equivalents m?2 from the GWL treatments at 0, ?10, ?20, ?30 and ?40 cm below the soil surface, respectively.

Conclusions

The results showed that a reduction in total GHG emission can be achieved without losing the productivity of newly established RCG when GWL is maintained close to the surface. Further studies should address the practical constrains and long-term productivity of RCG cultivation in rewetted peatlands.  相似文献   

10.
Before switching totally to alternative fuel stage, CO2 mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO2 mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO2 tolerance even at 15% CO2 level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO2 bubble retention time could enhance CO2 removal efficiencies by 79% and 67%, respectively. A maximum CO2 fixation rate of 1.01 g CO2 L−1 day−1 was measured experimentally.  相似文献   

11.
12.
Denitrification beds are a simple approach for removing nitrate (NO3) from a range of point sources prior to discharge into receiving waters. These beds are large containers filled with woodchips that act as an energy source for microorganisms to convert NO3 to nitrogen (N) gases (N2O, N2) through denitrification. This study investigated the biological mechanism of NO3 removal, its controlling factors and its adverse effects in a large denitrification bed (176 m × 5 m × 1.5 m) receiving effluent with a high NO3 concentration (>100 g N m−3) from a hydroponic glasshouse (Karaka, Auckland, New Zealand). Samples of woodchips and water were collected from 12 sites along the bed every two months for one year, along with measurements of gas fluxes from the bed surface. Denitrifying enzyme activity (DEA), factors limiting denitrification (availability of carbon, dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, pH, and concentrations of NO3, nitrite (NO2) and sulfide (S2−)), greenhouse gas (GHG) production - as nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) - and carbon (C) loss were determined. NO3-N concentration declined along the bed with total NO3-N removal rates of 10.1 kg N d−1 for the whole bed or 7.6 g N m−3 d−1. NO3-N removal rates increased with temperature (Q10 = 2.0). In laboratory incubations, denitrification was always limited by C availability rather than by NO3. DO levels were above 0.5 mg L−1 at the inlet but did not limit NO3-N removal. pH increased steadily from about 6 to 7 along the length of the bed. Dissolved inorganic carbon (C-CO2) increased in average about 27.8 mg L−1, whereas DOC decreased slightly by about 0.2 mg L−1 along the length of the bed. The bed surface emitted on average 78.58 μg m−2 min−1 N2O-N (reflecting 1% of the removed NO3-N), 0.238 μg m−2 min−1 CH4 and 12.6 mg m−2 min−1 CO2. Dissolved N2O-N increased along the length of the bed and the bed released on average 362 g dissolved N2O-N per day coupled with N2O emission at the surface about 4.3% of the removed NO3-N as N2O. Mechanisms to reduce the production of this GHG need to be investigated if denitrification beds are commonly used. Dissolved CH4 concentrations showed no trends along the length of the bed, ranging from 5.28 μg L−1 to 34.24 μg L−1. Sulfate (SO42−) concentrations declined along the length of the bed on three of six samplings; however, declines in SO42− did not appear to be due to SO42− reduction because S2− concentrations were generally undetectable. Ammonium (NH4+) (range: <0.0007 mg L−1 to 2.12 mg L−1) and NO2 concentrations (range: 0.0018 mg L−1 to 0.95 mg L−1) were always very low suggesting that anammox was an unlikely mechanism for NO3 removal in the bed. C longevity was calculated from surface emission rates of CO2 and release of dissolved carbon (DC) and suggested that there would be ample C available to support denitrification for up to 39 years.This study showed that denitrification beds can be an efficient tool for reducing high NO3 concentrations in effluents but did produce some GHGs. Over the course of a year NO3 removal rates were always limited by C and temperature and not by NO3 or DO concentration.  相似文献   

13.
Silvola  Jouko  Ahlholm  Urpo 《Plant and Soil》1995,(1):547-553
Birch seedlings (Betula pendula) were grown for four months in a greenhouse at three nutrient levels (fertilization of 0, 100 and 500 kg ha-1 monthy) and at four CO2 concentrations (350, 700, 1050 and 1400 ppm). The effect of CO2 concentration on the biomass production depended on the nutrient status. When mineralization of the soil material was the only source of nutrients (0 kg ha-1), CO2 enhancement reduced the biomass production slightly, whereas the highest production increase occurred at a fertilization of 100 kg ha-1, being over 100% between 350 and 700 ppm CO2. At 500 kg ha-1 the production increase was smaller, and the production decreased beyond a CO2 concentration of 700 ppm. The CO2 concentration had a slight effect on the biomass distribution, the leaves accounting for the highest proportion at the lowest CO2 concentration (350 ppm). An increase in nutrient status led to a longer growth period and increased the nutrient concentrations in the plants, but the CO2 concentration had no effect on the growth rhythm and higher CO2 reduced the nutrient concentrations.  相似文献   

14.
Sisal waste was used as precursor to prepare carbons by chemical activation. The influence of the K2CO3 amount and activation temperature on the materials textural properties were studied through N2 and CO2 adsorption assays. As the severity of the treatment increases there is a development of supermicropores, and the micropore size distribution changes from mono to bimodal. A carbon with an apparent surface area of 1038 m2 g−1 and pore volume of 0.49 cm3 g−1 was obtained. TPD results showed the incidence in acidic type groups although the pHPZC reveals an almost neutral character of the surface. Adsorption kinetic data of ibuprofen and paracetamol show that the processes obey to a pseudo-second order kinetic equation. Regarding the removal efficiency the prepared samples attained values comparable to a commercial carbon (>65%), revealing that chemical activation of sisal wastes with K2CO3 allows obtaining samples suitable for pharmaceutical compounds removal from liquid phase.  相似文献   

15.
Sixteen combinations of 5 treatments at 4 levels were designed in a L16(45) orthogonal experimental design to evaluate associative effects of five methanogenesis inhibitors at four dose levels: nitroethane (NE, 0 mM, 5 mM, 10 mM and 15 mM), 2-nitroethanol (NEOH, 0 mM, 5 mM, 10 mM and 15 mM), 2-nitro-1-propanol (NPOH, 0 mM, 5 mM, 10 mM and 15 mM), pyromellitic diimide (PMDI, 0 mM, 0.02 mM, 0.05 mM and 0.07 mM) and 2-bromoethanesulphonate (BES, 0 mM, 0.01 mM, 0.03 mM and 0.05 mM) on in vitro ruminal methane production of the mixed substrate (Chinese wildrye hay:maize meal = 4:1) using a cumulative gas production technique. After 48 h incubation, in vitro dry matter disappearance (IVDMD), total gas production (GP48, ml/g DM) and total volatile fatty acids (VFA) production in various combinations of these inhibitors were decreased by 10.6-56.0, 26.5-44.5 and 20.3-47.6%, respectively (P<0.05). The molar proportion of acetate in the inhibitor combination groups was decreased by 6.6-12.5% while those of propionate and butyrate were increased by 7.0-19.2 and 21.9-56.5% (P<0.01), respectively. Methane proportion (MP) in total gas production was reduced by 79.4-98.5% (P<0.01), and the highest inhibition occurred in the combination of 10 mM NE, 10 mM NPOH, 0.07 mM PMDI and 0.01 mM BES in cultures. The partial correlation coefficients between NE, NEOH, NPOH, PMDI or BES and CH4 proportion were −0.465 (P<0.01), −0.417 (P<0.01), −0.355 (P<0.05), −0.408 (P<0.01) and −0.345 (P<0.05), respectively, indicating that NE was the most potent inhibitor, followed by NEOH and PMDI, and finally NPOH and BES. In general, VFA production in the inhibitor combinations was substantially shifted to produce much more butyrate and propionate and less acetate. The combination of 15 mM NE, 10 mM NEOH, 5 mM NPOH, 0.07 mM PMDI and 0.01 mM BES in cultures, leading to >95% methane inhibition, may be the optimal application of these inhibitors with less depression of total VFA production. Further feeding trials to validate these combinations is still required on rumen function, methane production, growth performance and milk production.  相似文献   

16.
Anaerobic digestion to produce biogas is an important decentralised renewable energy technology. Production varies extensively between different countries and within countries, as biogas production is heavily dependent on local and regional feedstocks. In Germany, distinct regional differences can be observed. Therefore, understanding the kinds of biogas systems operating within a region is crucial to determine their greenhouse gas (GHG) mitigation potential and carbon neutrality. This is the first study to conduct an integrated life cycle assessment of biogas configurations in the landscape (biogas plants and their biomass catchments) for an entire region. RELCA a ‘REgional Life Cycle inventory Assessment’ approach was used to model the GHG mitigation potential of 425 biogas plants in the region of Central Germany (CG), aggregated to nine biogas clusters, based on feedstock mix (e.g. animal manures and energy crops) and installed capacity. GHG emission profiles were generated to compare and to identify the role of GHG credits and size of installed capacity on the mitigation performance of the regional biogas clusters. We found that smaller scaled slurry dominant clusters had significantly better GHG mitigation performance (?0.1 to ?0.2 kg CO2eq kWhel?1), than larger energy crop dominant (ECdom) clusters (0.04–0.16 kg CO2eq kWhel?1), due to lower cultivation emissions and larger credits for avoided slurry storage. Thus, for the CG region larger ECdom clusters should be targeted first, to support GHG mitigation improvements to the overall future electricity supplied by the regional biogas systems. With the addition of GHG credits, the CG region is producing biogas with GHG savings (?0.15 kg CO2eq kWhel?1, interquartile range: 0.095 kg CO2eq kWhel?1). This infers that biogas production, as a waste management strategy for animal manures, could have important ramifications for future policy setting and national inventory accounting.  相似文献   

17.
In life support systems, such as the MELiSSA (Micro-Ecological Life Support Alternative) project, developed by the European Space Agency, the aim is to understand and assemble artificial ecosystems for ensuring human subsistence in space. Fibrobacter succinogenes, an anaerobic bacterium, was used for the degradation of vegetable wastes produced in higher plants chambers, but the process does not allow the monitoring of biomass concentration and degradation rates. This study proposes a growth and a degradation monitoring technique using pressure measurements. First, volatile fatty acids (VFA) production was compared with biomass growth and with CO2 production. The experiments were carried out in batch and fed-batch processes on glucose and on vegetables. The results have shown that a link could be established between VFA production, degradation rate and gas pressure measurements. Thus, the pressure could be used both as a relevant variable for online evaluation of biomass growth and of degradation of complex vegetable wastes.  相似文献   

18.
Atmospheric CO2 enrichment is expected to affect the resource use efficiency of C3 plants with respect to water, nutrients and light in an interactive manner. The responses of oilseed rape (OSR) to elevated CO2 have not much been addressed. Since the crop has low nitrogen use efficiency, the interactive effects of CO2 enrichment and nitrogen supply deserve particular attention.Spring OSR was grown in climate chambers simulating the seasonal increments of day length and temperature in South-Western Germany. Three levels of N fertilisation representing 75, 150 and 225 kg ha−1 and two CO2 concentrations (380 and 550 μmol mol−1) were used to investigate changes in source-sink relationships, plant development and senescence, water use efficiency of the dry matter production (WUEprod.), allocation patterns to different fractions, growth, yield and seed oil contents. Seven harvests were performed between 72 and 142 days after sowing (DAS).Overall, plant performance in the chambers was comparable to the development under field conditions. While CO2 responses were small in the plants receiving lowest N-levels, several significant N × CO2 interactions were observed in the other treatments. Increasing the N availability resulted in longer flowering windows, which were furthermore extended at elevated CO2 concentrations. Nevertheless, significantly less biomass was allocated to reproductive structures under elevated CO2, while the vegetative C-storing organs continued to grow. At the final harvest shoot mass of the CO2 exposed plants had increased by 9, 8 and 15% in the low, medium and high N treatments. Root growth was increased even more by 17, 43 and 33%, respectively and WUEprod. increased by 23, 42 and 35%. At the same time, seed oil contents were significantly reduced by CO2 enrichment in the treatments with ample N supply.Obviously, under high N-supply, the CO2 fertilisation induced exaggerated growth of vegetative tissues at the expense of reproductive structures. The interruption of source-sink relationships stimulated the formation of side shoots and flowers (branching out). While direct effects of elevated CO2 on flowering can be excluded, we assume that the increased growth under high N and CO2 supply created nutrient imbalances which hence affected flowering and seed set.Nevertheless, the final seed macronutrient concentrations were slightly increased by elevated CO2, indicating that remobilisation of nutrients from the sources (leaves) to the sinks (seeds) remained effective. These findings were supported by the lower nitrogen concentrations in senescing leaves and probably increased N remobilisation to other plant parts under elevated concentrations of CO2. All the same, CO2 enrichment caused a decline in seed oil contents, which may translate into a reduced crop quality.  相似文献   

19.
The optimization of a two-phase thermophilic anaerobic process treating biowaste for hydrogen and methane production was carried out at pilot scale using two stirred reactors (CSTRs) and without any physical/chemical pre-treatment of inoculum. During the experiment the hydrogen production at low hydraulic retention time (3d) was tested, both with and without reject water recirculation and at two organic loading rate (16 and 21 kgTVS/m3d). The better yields were obtained with recirculation where the pH reached an optimal value (5.5) thanks to the buffering capacity of the recycle stream. The specific gas production of the first reactor was 51 l/kgVSfed and H2 content in biogas 37%. The mixture of gas obtained from the two reactors met the standards for the biohythane mix only when lower loading rate were applied to the first reactor, with a composition of 6.7% H2, 40.1% CO2 and 52.3% CH4 the overall SGP being 0.78 m3/kgVSfed.  相似文献   

20.
In many coastal areas of South-East Asia, attempts have been made to revive coastal ecosystem by initiating projects that encourage planting of mangrove trees. Compared to the terrestrial trees, mangrove trees possess a higher carbon fixation capacity. It becomes a very significant option for clean development mechanism (CDM) program. However, a reliable method to estimate CO2 fixation capacity of mangrove trees has not been established. Acknowledging the above fact, we decided to set up an estimation method for the CDM program, using gas exchange analysis to estimate mangrove productivity, we put into consideration the net CO2 fixation of reforested Kandelia candel (5-, 10-, and 15-year-old stand). This was estimated by gas exchange analysis and growth curve analysis. In growth curve analysis, we drew a growth curve of a single stand using data of above- and below-ground biomass. In the gas exchange analysis, we calculated CO2 fixation capacity by (1) measuring respiration rate of each organ of stand and calculating respiratory CO2 emission from above- to below-ground biomass. (2) Measuring the single-leaf photosynthetic rate in response to light intensity and calculating the photosynthetic CO2 absorption. (3) We also developed a model for the diurnal changes in temperature, and monthly averages based on one-day estimation of CO2 absorption and emission, which we corrected by this model in order to estimate the net CO2 fixation capacity in response to temperature. Comparing the biomass accumulation of the two methods constructed for the same forest, the above-ground biomass accumulation of 10-year-old forest (34.3 ton ha−1 yr−1) estimated by gas exchange analysis was closely compared to those of growth curve analysis (26.6 ton ha−1 yr−1), suggesting that the gas exchange analysis was capable of estimating mangrove productivity. The validity of the estimated CO2 fixation capacity by the gas exchange analysis and the growth curve analysis was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号