首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth, osmotic adjustment, antioxidant enzyme defense and principle medicinal component bacoside A was studied in in vitro raised shoots of Bacopa monnieri under different concentrations of KCl and CaCl2 (0, 50, 100, 150 or 200 mM). Significant reduction was observed in shoot number per culture; shoot length, fresh weight, dry weight and tissue water content (TWC) when shoots were exposed to increasing KCl and CaCl2 concentrations (50–200 mM) as compared to control. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in control in contrast to sharp increase in KCl and CaCl2 stressed shoots. Higher amounts of free proline, glycine betaine and total soluble sugars (TSS) accumulated in KCl and CaCl2 exposed shoots compared to the controls. Among different concentrations of KCl and CaCl2, increasing concentration of CaCl2 showed more increase in osmolyte accumulation. Na+ content decreased with increasing concentrations of KCl and CaCl2. Accumulation of K+ increased significantly in KCl (50–100 mM) stressed shoots as compared to control, while it decreased in CaCl2 treated shoots indicating that it prevents the uptake of K+ ions. Ca2+ accumulation significantly increased with increasing concentrations of CaCl2 up to 150 mM but decreased at higher concentrations. Shoots treated with KCl and CaCl2 (0–100 mM) showed higher antioxidant enzyme (SOD, CAT, APX and GPX) activities but KCl suppressed the activities at higher concentrations. Accumulation of bacoside A was enhanced with an increase in KCl and CaCl2 concentration up to 100 mM. It appears from the data that accumulation of osmolytes, and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa and the two salts tested have a positive effect on bacoside accumulation.  相似文献   

2.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

3.
The present study was conducted to test the effects of KNO3, KH2PO4, and CaCl2 on shoot multiplication, root proliferation, and accumulation of phytochemicals in in vitro cultures of Oroxylum indicum. The results indicate that modifying the MS salt formulation in relation to particular inorganic nutrients highly affected shoot multiplication, root proliferation, and accumulation of flavonoids in in vitro cultures. A concentration of 0.60 g L?1 CaCl2 resulted in the highest frequency of shoot regeneration (5.6 shoots per explant). A concentration of 0.40 g L?1 CaCl2 resulted in the highest frequency of root regeneration (7.8 roots per shoot). Modifications of the concentrations of inorganic salts were also found to be advantageous for production media for both multiple shoots and shoot-derived root in vitro cultures. Multiple shoots generated on shoot induction medium with a concentration of 0.60 g L?1 CaCl2 and roots generated on root induction medium with a concentration of 1.5 g L?1 KNO3 yielded about a five times higher flavonoid level than cultures generated on control medium respectively.  相似文献   

4.
The changes in lipid peroxidation and the involvement of the antioxidant system in relation to salt stress tolerance were investigated in the callus of Acanthophyllum glandulosum and Acanthophyllum sordidum. The callus was subjected to NaCl stress (50–200 mM) for 40 d. The callus of A. glandulosum was less sensitive to NaCl stress than that of A. sordidum. Increasing concentrations of NaCl from 50 to 200 mM correlated to increased proline content in A. glandulosum. Total protein content was higher in extracts of A. glandulosum than in extracts of A. sordidum under both control and salinity treatments. Compared with A. sordidum, lipid peroxidation and H2O2 content were lower and the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase, and glutathione reductase were higher in A. glandulosum under salt stress. Activity staining of antioxidant enzymes separated by native polyacrylamide gel electrophoresis (PAGE) revealed that callus of A. sordidum had five Fe-SOD isoforms and one Mn-SOD isoform, all of which were reduced by salinity. In A. glandulosum, two Mn-SOD, three Fe-SOD, and one Cu/Zn-SOD isoforms were detected. Out of these six SOD isoforms, expression of the Mn-SOD and Fe-SOD isoforms was enhanced at 100 mM and higher NaCl concentrations. Two and six GPX isoforms were detected in A. sordidum and A. glandulosum, respectively. Expression of the single CAT isoform in A. sordidum was preferentially reduced by salinity. In A. glandulosum, the two CAT isoforms showed differential down regulation under NaCl stress, with the CAT2 isoform detected only under control condition. These results suggest that A. glandulosum callus is better protected against salinity-induced oxidative damage by maintaining higher activities of antioxidant enzymes than the callus of A. sordidum.  相似文献   

5.
The effect of salinity on the non-enzymic and enzymic antioxidant activity, shoot proliferation and nutrient accumulation was studied in in vitro cultures of the rootstock CAB-6P (Prunus cerasus L.). Three concentrations (0, 30 and 60 mM) of NaCl or CaCl2 were added to a modified MS medium. Between the two salt treatments used, only the explants treated with CaCl2 presented significant decrease in growth parameters. The concentrations of Na+ and Cl in the explants treated with NaCl were increased, as NaCl in the culture medium increased. Furthermore, in the explants treated with CaCl2 the concentrations of Ca2+ and Cl were increased while that of K+ decreased, as CaCl2 concentration increased. The activity of peroxidase in leaves as well as the number of its anionic isoforms was increased under 30 mM CaCl2 as well as 60 mM NaCl or CaCl2. On the contrary, increasing salinity, from 0 to 60 mM CaCl2, resulted in a reduction of the catalase activity in leaves followed by disappearance of the only one catalase isoform that was detected in leaves (60 mM CaCl2). In the stems of the explants treated with NaCl the peroxidase activity was reduced. In the stems and leaves of the explants grown in saline substrate the non-enzymic antioxidant activity was significantly increased. The results suggest that the stems and leaves of CAB-6P explants presented variable antioxidant responses that were depended on the salt form used. The contribution of enzymic and non-enzymic protection mechanisms to the adaptation of CAB-6P explants under salinity stress is discussed.  相似文献   

6.
Salt-induced oxidative stress in rosemary plants: Damage or protection?   总被引:1,自引:0,他引:1  
Mechanisms of photoprotection and antioxidant protection, including changes in chlorophylls, xanthophyll cycle components and levels of low-molecular-weight chloroplastic antioxidants (lutein, β-carotene and α-tocopherol) were studied together with levels of malondialdehyde, a product of lipid peroxidation, in the response of rosemary (Rosmarinus officinalis L.) plants to salt stress. Plants were exposed to increasing NaCl concentrations (50, 100 and 150 mM) for 6 weeks, and two concentrations of the following chloride salts: KCl, CaCl2, MgCl2 and FeCl3, were used together with 100 mM NaCl to explore the extent to which these salts can alter the mechanisms of photoprotection, antioxidant protection and malondialdehyde accumulation in leaves. Increasing concentrations of NaCl decreased leaf water contents and photosynthetic pigment levels, while the contents of α-tocopherol and malondialdehyde increased, but with completely different kinetics. α-Tocopherol levels increased in a dose-dependent manner as stress progressed, while malondialdehyde levels increased at the highest dose (150 mM NaCl) but only during early phases of stress. Furthermore, although the addition of chloride salts to NaCl-treated plants apparently improved leaf physiological status, in terms of water and chlorophyll contents, plants showed an increased photoprotective demand and increased oxidative stress, particularly in FeCl3-treated plants. It is concluded that (i) rosemary plants can withstand moderate doses of NaCl in the medium (at least 150 mM NaCl for 6 weeks), (ii) oxidative stress may be a mechanism for protecting plants from moderate doses of salt stress rather than causing damage to plants, and (iii) the addition of chloride salts to NaCl-treated plants may dramatically increase the photoprotective demand and oxidative stress of leaves, while plant growth is not negatively affected.  相似文献   

7.
An experiment was conducted to evaluate the influence of Glomus intraradices colonization on the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the accumulation of nonenzymatic antioxidants (ascorbic acid, α-tocopherol, glutathione, and carotenoids) in roots and leaves of fenugreek plants subjected to varying degrees of salinity (0, 50, 100, and 200 mM NaCl) at two time intervals (1 and 14 days after saline treatment, DAT). The antioxidative capacity was correlated with oxidative damage in the same tissue. Under salt stress, lipid peroxidation and H2O2 concentration increased with increasing severity and duration of salt stress (DoS). However, the extent of oxidative damage in mycorrhizal plants was less compared to nonmycorrhizal plants. The study reveals that mycorrhiza-mediated attenuation of oxidative stress in fenugreek plants is due to enhanced activity of antioxidant enzymes and higher concentrations of antioxidant molecules. However, the significant effect of G. intraradices colonization on individual antioxidant molecules and enzymes varied with plant tissue, salinity level, and DoS. The significant effect of G. intraradices colonization on antioxidative enzymes was more evident at 1DAT in both leaves and roots, while the concentrations of antioxidant molecules were significantly influenced at 14DAT. It is proposed that AM symbiosis can improve antioxidative defense systems of plants through higher SOD activity in M plants, facilitating rapid dismutation of O2 - to H2O2, and subsequent prevention of H2O2 build-up by higher activities of CAT, APX, and PX. The potential of G. intraradices to ameliorate oxidative stress generated in fenugreek plants by salinity was more evident at higher intensities of salt stress.  相似文献   

8.
To understand the adaptability of alfalfa (Medicago sativa L.) to environmental stresses, we analyzed the activity of several antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT), in alfalfa shoots and roots subjected to salt and drought stresses during germination. The germination rate of six alfalfa cultivars was comparatively studied under 200 mM NaCl or 35% PEG treatment. Alfalfa Xinmu No. 1 and Northstar varieties were selected as stress-tolerant and -sensitive cultivars, respectively, and were used for further characterization. After NaCl or PEG treatment, Xinmu No. 1 showed enhanced seedling growth, compared with Northstar. Xinmu No. 1 also exhibited low levels of hydrogen peroxide (H2O2) production and lipid peroxidation, compared with Northstar. In addition, Xinmu No. 1 showed higher enzymatic activity of SOD, APX, CAT, and POD in its shoots and roots than Northstar. These results seem to indicate that Xinmu No. 1 cultivar's tolerance to salt or drought stresses during germination is associated with enhanced activity of antioxidant enzymes. This study highlights the importance of antioxidant enzymes in the establishment of alfalfa seedlings under drought and salinity conditions typical of desertification.  相似文献   

9.
Summary The effects of increasing concentrations of NaCl and CaCl2 on quince (Cydonia oblonga Mill. BA 29 clone) somatic embryogenesis and adventitious root regeneration were investigated. Leaves collected from in vitro-grown shoots were used as explants and induced for 2d in liquid Murashige and Skoog medium containing 11.3 μM 2,4-dichlorophenoxyacetic acid. Explants were then cultured on semisolid Murashige and Skoog medium enriched with 4.7 μM kinetin and 0.5 μM naphthaleneacetic acid under red light for 25 d and under white light for another 25 d. Two experiments were performed: in the first, NaCl was used at 0,25, 50, 100, and 200 mM in factorial combination with CaCl2 at 3, 9, and 27 mM; in the second, NaCl was applied at 0, 5, 10, 20, 40, and 80 mM in combination with CaCl2 at 0.3, 1.0, and 3.0 mM. Quince leaves revealed the capacity to regenerate somatic embryos and/or adventitious roots. Quantitative and qualitative regeneration from leaves was affected by NaCl treatments: increasing NaCl concentrations, in combination with CaCl2 at 1 mM, led to an increase in the proportion of leaves producing somatic embryos only, and to a decrease of both leaves regenerating roots only and leaves simultaneously producing somatic embryos and adventitious roots. This suggests a beneficial effect of salt stress on the embryogenic process. The regeneration response decreased with increasing salt concentrations and was almost totally inhibited above 50 mM NaCl and 9 mM CaCl2. The presence of CaCl2 in the culture medium apparently mitigated the effects of salt stress, but only when NaCl was applied at 40 mM. NaCl at 5 mM, in the presence of 0.3 or 1 mM CaCl2, was favorable both to somatic embryo and root production. No value of the ratio Na+/Ca2+ was found to be optimal for the regeneration processes.  相似文献   

10.
1. In the presence of 0.05 per cent dextrose the respiration of Aspergillus niger is increased by NaCl in concentrations of 0.25 to 0.5M, and by 0.5M CaCl2. 2. Stronger concentrations, as 2M NaCl and 1.25M CaCl2, decrease the respiration. The decrease in the higher concentrations is probably an osmotic effect of these salts. 3. A mixture of 19 cc. of NaCl and 1 cc. of CaCl2 (both 0.5M) showed antagonism, in that the respiration was normal, although each salt alone caused an increase. 4. Spores of Aspergillus niger did not germinate on 0.5M NaCl (plus 0.05 per cent dextrose) while they did on 0.5M CaCl2 (plus 0.05 per cent dextrose) and on various mixtures of the two. This shows that a substance may have different effects on respiration from those which it has upon growth.  相似文献   

11.
Ethylene and ethane production in response to salinity stress   总被引:1,自引:1,他引:0  
Abstract Ethylene and ethane production in mung bean hypocotyl sections were evaluated as possible indicators of stress due to contact with four salts that are common in natural sites. Ethylene production decreased with increasing concentrations of applied NaCl and KCl. When CaCl2 was applied, the ethylene evolution was greater. However, when MgCl2 was applied, ethylene evolution remained high then decreased and at higher salt concentrations again showed an increase. NaCl (up to 0.1 kmol m?1) and KCl (up to 0.5 kmol m?3) caused a concentration-dependent increase in ethane production. The ethane production with CaCl2 was the lowest among the salts tested and only a minute increase was noticed with the increase of concentration from 0.01 to 1 kmol m?3. Ethane production showed a distinct maximum at 0.2 kmol m?3 MgCl2. The introduction of 0.01 kmol m?3 CaCl2, as well as anaerobic conditions obtained by purging vials with N2, eliminated that high ethane production. Respiratory activity of the mung bean hypocotyl sections in MgCl2 concentrations from 0 to 0.5 kmol m?3 was correlated with ethane but not with ethylene production. The ethane/ethylene ratio showed three patterns for the four salts tested.  相似文献   

12.
Summary To determine NaCl effects on callus growth and antioxidant activity, callus of a salt-tolerant and a salt-sensitive cultivar of cotton was grown on media amended with 0, 75, and 150 mM NaCl. Callus of the salt-tolerant cultivar, Acala 1517-8 8, grown at 150 mM NaCl, showed significant increases in superoxide dismutase, catalase, ascorbate peroxidase, peroxidase and glutathione reductase activities compared to callus tissue grown at 0 mM NaCl. In contrast, callus tissue of the salt-sensitive cultivar, Deltapine 50, grown at 0, 75, and 150 mM NaCl, showed no difference in the activities of these enzymes. At the 150 mM NaCl treatment, peroxidase was the only antioxidant enzyme from Deltapine 50 with an activity as high as that observed in Acala 1517-88. The NaCl-induced increase in the activity of these enzymes in Acala 1517-88 indicates that callus tissue from the more salt-tolerant cultivar has a higher capacity for scavenging and dismutating superoxide, an increased ability to decompose H2O2, and a more active ascorbate-glutathione cycle when grown on media amended with NaCl.  相似文献   

13.
Shoots of Thellungiella derived by micropropagation were used to estimate the plants'' salt tolerance and ability to regulate Na+ uptake. Two species with differing salt tolerances were studied: Thellungiella salsuginea (halophilla), which is less tolerant, and Thellungiella botschantzevii, which is more tolerant. Although the shoots of neither ecotype survived at 700 mM NaCl or 200 mM Na2SO4, micropropagated shoots of T. botschantzevii were more tolerant to Na2SO4 (10–100 mM) and NaCl (100–300 mM). In the absence of roots, Na2SO4 salinity reduced shoot growth more dramatically than NaCl salinity. Plantlets of both species were able to adapt to salt stress even when they did not form roots. First, there was no significant correlation between Na+ accumulation in shoots and Na+ concentration in the growth media. Second, K+ concentrations in the shoots exposed to different salt concentrations were maintained at equivalent levels to control plants grown in medium without NaCl or Na2SO4. These results suggest that isolated shoots of Thellungiella possess their own mechanisms for enabling salt tolerance, which contribute to salt tolerance in intact plants.Key words: Thellungiella salsuginea, Thellungiella botschantzevii, salt tolerance, isolated shoots, growth, rhizogenesis, ion accumulation  相似文献   

14.
Summary Osmotic and specific ion effect are the most frequently mentioned mechanisms by which saline substrates reduce plant growth. However, the relative importance of osmotic and specific ion effect on plant growth seems to vary depending on the drought and/or salt tolerance of the plant under study. We studied the effects of several single salts of Na+ and Ca2+−NaCl, NaNO3, Na2SO4, NaHCO3, Na2CO3, and Ca(NO3)2—on the germination and root and coleoptile growth of two wheat (Triticum aestivum L.) cultivars, TAM W-101 and Sturdy, the former being more drought tolerant than the latter. The concentrations used were: 0, 0.02, 0.04, 0.08, 0.16, and 0.32 mol L−1. Significant two- and three-way interactions were observed between cultivar, kind of salt, and salt concentration for germination, growth of coleoptile and root, and root/coleoptile ratio. Salts differed significantly (P<0.001) in their effect on seed germination, coleoptile and root growth of both cultivars. Germination of TAM W-101 seeds was consistently more tolerant than that of Sturdy to NaCl, CaCl2, Ca(NO3)2, and NaHCO3 salts at concentrations of 0.02, 0.04, 0.08, 0.16 mol L−1. The osmotic potential, at which the germination of wheat seeds was reduced to 50% of that of the control, was different depending on the kind of salt used in the germination medium. NaCl at low concentrations (0.02 and 0.04 mol L−1) stimulated the germination of both wheat cultivars. At concentrations of 0.02 to 0.16 mol L−1, Ca2+ salts (CaCl2 and Ca(NO3)2) were consistently more inhibitory than the respective Na+ salts (NaCl and NaNO3) for germination of Sturdy. This did not consistently hold true for TAM W-101. Among the Na+ salts, NaCl was the least toxic and NaHCO3 and Na2CO3 were the most toxic for seed germination. Root and coleoptile (in both wheat cultivars) differed in their response to salts. This differential response of coleoptile and root to each salt resulted in seedlings with a wide range of root/coleoptile ratios. For example, the root/coleoptile ratio of cultivar TAM W-101 changed from 2.09 (in the control) to 3.77, 3.19, 2.8, 2.44, 1.31, 0.32, and 0.0 when subjected to 0.08 mol L−1 of Na2SO4, NaCl, CaCl2, NaNO3, Ca(NO3)2, NaHCO3, and Na2CO3, respectively. Na2CO3 at 0.08 mol L−1 inhibited root growth to such an extent that germinated wheat seeds contained coleoptile but no roots. The data indicate that, apart from the clear and more toxic effects of NaHCO3 and Na2CO3 and lesser toxic effect of NaCl on germination and seedling growth, any toxicity-ranking of other salts done at a given concentration and for a given tissue growth may not hold true for other salt concentrations, other tissues and/or other cultivars. The more drought-tolerant TAM W-101, when compared to the less drought tolerant Sturdy, showed higher tolerance (at most concentrations) to NaCl, CaCl2, Ca(NO3)2 and NaHCO3 during its seed germination and to Na2SO4 and CaCl2 for its root growth. This supports other reports that some drought-tolerant wheat cultivars are more tolerant to NaCl. In contrast, the coleoptile growth of drought-sensitive Sturdy was noticeably more tolerant to NaNO3, Ca(NO3)2 and NaHCO3 than that of drought-tolerant TAM W-101. Based on the above and the different root/coleoptile ratios observed in the presence of various salts, it is concluded that in these wheat cultivars: a) coleoptile and root tissues are differently sensitive to various salts, and b) at the germination stage, tolerance to certain salts is higher in the more drought-tolerant cultivar.  相似文献   

15.
Effects of salinity on growth, protein content, proline, catalase and antioxidant enzyme activity in callus of three halophytes of the Thar Desert; Salsola baryosma, Trianthema triquetra and Zygophyllum simplex were evaluated. Callus tissues were cultured on Murashige and Skoog’s medium containing different concentrations of NaCl (50, 100 and 200 mM). Increase in dry weight and soluble proteins were observed in the callus exposed to lower salinity (50 and 100 mM NaCl) in all the three species, whereas on the medium containing 200 mM NaCl, significant decrease in these two growth parameters was recorded. Under the salinity stress maximum proline accumulation was found in S. baryosma with parallel increase in soluble sugars. Among the three species, T. triquetra callus showed maximum CAT activity with 50 and 100 mM NaCl treatment, whereas the enzyme activity decreased at 200 mM NaCl treatment in all three species. The antioxidant potential steadily elevated under salt treatment in all the above three species using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) assay. Whereas, superoxide dismutase (SOD) quenching were recorded maximum at low (50 and 100 mM) concentrations in all the three species. However, T. triquetra callus showed maximum total phenolic content (TPC) 15 mg GAE g?1 with the elevated concentration of NaCl up to 200 mM, and S. baryosma callus showed lower TPC as compared to both species. A significant correlation between antioxidant capacity and TPC was observed indicating that phenolic compounds are the major contributors to the antioxidant potential in these halophyte species. FRAP and DPPH activity of Z. simplex showed maximum correlation (R = 0.992), as compared to other two species. We can conclude that all the three species exhibit a protection mechanism by sustaining growth parameters and antioxidant capacity. Due to high antioxidant property of all these species, the plant extracts may be included in nutraceutical formulations.  相似文献   

16.
1. In relatively low concentrations of NaCl, KCl, and CaCl2 the rate of respiration of Bacillus subtilis remains fairly constant for a period of several hours, while in the higher concentrations, there is a gradual decrease in the rate. 2. NaCl and KCl increase the rate of respiration of Bacillus subtilis somewhat at concentrations of 0.15 M and 0.2 M respectively; in sufficiently high concentrations they decrease the rate. CaCl2 increases the rate of respiration of Bacillus subtilis at a concentration of 0.05 M and decreases the rate at somewhat higher concentrations. 3. The effects of salts upon respiration show a well marked antagonism between NaCl and CaCl2, and between KCl and CaCl2. The antagonism between NaCl and KCl is slight and the antagonism curve shows two maxima.  相似文献   

17.
The apple (Malus domestica Borkh) rootstock M 4 shoots were grown in vitro for 4 weeks on Murashige and Skoog (MS) medium containing three NaCl concentrations (35, 100 and 200 mM) in combination with two CaCl2 concentrations (5 and 10 mM). Inclusion of 10 mM CaCl2 in the medium, in the presence of 35 mM NaCl, significantly increased the number of shoots and the fresh mass compared to 5 mM CaCl2. The number of shoots, length of shoots, and the fresh mass of cultures were very low in the presence of 100 and 200 mM NaCl, independently of CaCl2 concentration of the medium. By increasing NaCl and CaCl2 concentrations in the culture medium, contents of N, Na, Cl, proline and soluble sugars in plantlets increased, whereas K, Mg, B, Zn and chlorophyll content decreased in comparison to the control.  相似文献   

18.
19.
The pathogenicity of Egyptian and German isolates of soil-borne root rotting fungi to seedlings of three cultivars of sugarbeet in presence or absence of different concentrations of either NaCl or CaCl2 were studied under greenhouse conditions. In the absence of salt treatments Egyptian isolates ofRhizoctonia solani were most virulent on all sugarbeet cultivars followed bySclerotium rolfsii andFusarium oxysporum f. sp.betae, the latter proved to be a weak pathogen. The results also revealed that the German isolates ofSclerotinia sclerotiorum were pathogenic to all sugarbeet cultivars studied, whileBotrytis cinerea was only a weak pathogen. However, the presence of salts, NaCl or CaCl2, in different concentrations seemed to cause alterations in such pathogenicity.  相似文献   

20.
The effects of salt stress were studied on the accumulation and metabolism of proline and its correlation with Na+ and K+ content in shoots and callus tissue of four potato cultivars, viz., Agria, Kennebec (relatively salt tolerant), Diamant and Ajax (relatively salt sensitive). Na+ and proline contents increased in all cultivars under salt stress. However, K+ and protein contents decreased in response to NaCl treatments. The activities of enzymes involved in proline metabolism, Δ1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) increased and decreased, respectively, in response to elevated NaCl concentrations. The changes of P5CS and ProDH activities in more salt sensitive cultivars (Diamant, Ajax) were more than those in the tolerant ones. Then the stimulation of synthesis in combination with a partially increase of protein proteolysis, a decrease in proline utilization and inhibition of oxidation resulted in high proline contents in seedlings and calli under salt stress. In callus tissue, reduced growth and cell size may be partially responsible for high proline accumulation in response to high NaCl levels. However, although the basic proline contents in the seedlings of more salt tolerant cultivars were higher than the sensitive ones, a clear relationship was not generally observed between accumulation of proline and salt tolerance in potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号