首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH and hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR) were varied to optimize the conversion of carbohydrate-rich synthetic wastewater into bio-hydrogen. A full factorial design using evolutionary operation (EVOP) was used to determine the effect of the factors and to find the optimum condition of each factor required for high hydrogen production rate. Experimental results from 20 runs indicate that a maximum hydrogen production rate of 4,460-5,540 mL/L/day under the volumetric organic loading rate (VOLR) of 75 g-COD/L/day obtained at an observed design point of HRT = 8 h and pH = 5.7. The hydrogen production rate was strongly dependent on the HRT, and the effect was statistically significant (P < 0.05). However, no significant effect (P > 0.05) was found for the pH on the hydrogen production rate. When the ASBR conditions were set for a maximum hydrogen production rate, the hydrogen production yield and specific hydrogen production rate were 60-74 mL/g-COD and 330-360 mL/g-VSS/day, respectively. The hydrogen composition was 43-51%, and no methanogenesis was observed. Acetate, propionate, butyrate, valerate, caproate, and ethanol were major liquid intermediate metabolites during runs of this ASBR. The dominant fermentative types were butyrate-acetate or ethanol-acetate, representing the typical anaerobic pathway of Clostridium species. This hydrogen-producing ASBR had a higher hydrogen production rate, compared with that produced using continuous-flow stirred tank reactors (CSTRs). This study suggests that the hydrogen-producing ASBR is a promising bio-system for prolonged and stable hydrogen production.  相似文献   

2.
The combination of anaerobic and aerobic periods in the operation cycle of a Sequencing Batch Reactor (SBR) was chosen to study biological color removal from simulated textile effluents containing reactive, sulfonated, monoazo and diazo dyes, respectively, Remazol Brilliant Violet 5R and Remazol Black B. 90% color removal was obtained for the violet dye in a 24-h cycle with a Sludge Retention Time (SRT) of 15 days and an aerated reaction phase of 10 h. For the black dye only 75% color removal was achieved with the same operational conditions and no improvement was observed with the increase of the SRT to 20 days. For the violet dye a reduction of the color removal values from 90 to 75% was observed with the increase of the aerated reaction phase from 10 to 12 h. However, this increase did not promote the aerobic biodegradation of the produced aromatic amines. Abiotic tests were performed with sterilized SBR samples and no color removal was observed in cell-free supernatants. However color removal values of 30 and 12% were observed in the presence of sterilized cells and supernatants with violet and black dye, respectively and could be attributed to the presence of active reducing principles in the sterilized samples.  相似文献   

3.
Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m−3 day−1 in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (μ overall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (k d), observed yield (Y obs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Y obs) is associated with an increased solid retention time, while k d and Y changed insignificantly and can be regarded as constants under different organic loading rates.  相似文献   

4.
A mathematical model is developed to describe the growth of multiple microbial species such as heterotrophs and autotrophs in activated sludge system. Performance of a lab-scale sequencing batch reactor involving storage process is used to evaluate the model. Results show that the model is appropriate for predicting the fate of major model components, i.e., chemical oxygen demand, storage polymers (X STO), volatile suspended solid (VSS), ammonia, and oxygen uptake rate (OUR). The influence of sludge retention time (SRT) on reactor performance is analyzed by model simulation. The biomass components require different time periods from one to four times of SRT to reach steady state. At an SRT of 20 days, the active bacteria (autotrophs and heterotrophs) constitute about 57% of the VSS; the remaining biomass is not active. The model established demonstrates its capacity of simulating the reactor performance and getting insight in autotrophic and heterotrophic growth in complex activated sludge systems.  相似文献   

5.
Nutrient removal from synthetic wastewater was investigated using a four-step sequencing batch reactor (SBR) at different phenol (C6H5OH) concentrations in order to determine the inhibition effects of phenol on biological nutrient removal. The nutrient removal process consisted of anaerobic, oxic, anoxic, and oxic phases with hydraulic residence times (HRT) of 1 h/3 h/1 h/1 h and a settling phase of 3/4 h. Solids retention time (SRT) was kept constant at 10 days in all experiments. Initial phenol concentrations were varied between 0 and 600 mg l−1 at seven different levels. The effects of phenol on COD, NH4-N, and PO4-P removals and effluent nutrient levels were investigated. Phenol was almost completely degraded up to 400 mg l−1 phenol concentration resulting in almost negligible inhibition effects on COD, NH4-N, and PO4-P removals. Nutrient removals were adversely affected by phenol at concentrations above 400 mg l−1. Above 95% COD, 90% NH4-N and 65% PO4-P removal was obtained for phenol concentrations below 400 mg l−1. The sludge volume index (SVI) was almost constant around 45 ml g−1 for phenol concentrations below 400 mg l−1 but increased to 90 ml g−1 at a phenol level of 600 mg l−1.  相似文献   

6.
Treatment of aged (500 day, 4 °C stored) chlortetracycline (CTC; 0, 20, 40, 80 mg/L CTC)-amended swine manure using two cycle, 22 day stage anaerobic sequencing batch reactors (SBR) was assessed. Eighty milligrams per liter CTC treatment inhibited SBR treatment efficiencies, although total gas production was enhanced compared to the no-CTC treatment. The 20 and 40 mg/L CTC treatments resulted in either slight or no differences to SBR treatment efficiencies and microbial diversities compared to the no-CTC treatment, and were generally similar to no-CTC treatments upon completion of the first 22 day SBR cycle. All CTC treatments enhanced SBR gas generation, however CH4 yields were lowest for the 80 mg/L CTC treatment (0.111 L CH4/g tCOD) upon completion of the second SBR react cycle. After a 22 day acclimation period, the 80 mg/L CTC treatment inhibited methanogenesis due to acetate accumulation, and decreased microbial diversity and CH4 yield compared to the no-CTC treatment.  相似文献   

7.
A laboratory study was conducted to determine whether tetryl (2,4,6-trinitrophenlymethylnitramine) contaminated soil could be bioremediated using a sequencing batch soil slurry reactor (SBR) operated under anoxic–aerobic sequence. The results indicated that tetryl was co-metabolically converted to aniline under anoxic conditions with molasses as the growth substrate. The gas chromatographic/mass spectrometric analysis of the soil slurry showed various metabolites, identified as trinitrobenzeneamine, dintrobenzenediamine, nitroaniline and aniline. Aniline was not metabolized further under anoxic conditions. When the soil slurry reactor was operated under aerobic conditions, the aniline concentration was reduced to below the detection limit (0.05 ppm). This metabolic conversion of tetryl is probably of value in the treatment of tetryl-contaminated soil and ground water, such as those found at the Joliet army ammunition plant site in Illinois and the Iowa army ammunition plant site in Burlington, Iowa.  相似文献   

8.
Ozonation pretreatment was applied to palm oil mill effluent (POME) prior to anaerobic digestion using the anaerobic sequencing batch reactor (ASBR). Ozonation increased BOD/COD by 37.9% with a COD loss of only 3.3%. At organic loads of 6.48-12.96 kg COD/m3/d, feeding with non-ozonated POME caused a system failure. The ozonated POME gave significantly higher TCOD removal at loadings 6.52 and 9.04 kg COD/m3/d but failed to sustain the operation at loading 11.67 kg COD/m3/d. Effects of cycle time (CT) and hydraulic retention time (HRT) were determined using quadratic regression model. The generated response surface and contour plot showed that at this high load conditions (6.52-11.67 kg COD/m3/d), longer HRT and shorter CT gave the ASBR higher organic removal efficiency and methane yield. The model was able to satisfactorily describe the relationship of these two key operating parameters.  相似文献   

9.
10.
The performance of biological phosphorus removal (BPR) in a sequencing batch reactor (SBR) with single-stage oxic process was investigated using simulated municipal wastewater. The experimental results showed that BPR could be achieved in a SBR without anaerobic phase, which was conventionally considered as a key phase for BPR. Phosphorus (P) concentration 0.22–1.79 mg L−1 in effluent can be obtained after 4 h aeration when P concentration in influent was about 15–20 mg L−1, the dissolved oxygen (DO) was controlled at 3 ± 0.2 mg L−1 during aerobic phase and pH was maintained 7 ± 0.1, which indicated the efficiencies of P removal were achieved 90% above. Experimental results also showed that P was mainly stored in the form of intracellular storage of polyphosphate (poly-P), and about 207.235 mg phosphates have been removed by the discharge of rich-phosphorus sludge for each SBR cycle. However, the energy storage poly-β-hydroxyalkanoates (PHA) was almost kept constant at a low level (5–6 mg L−1) during the process. Those results showed that phosphate could be transformed to poly-P with single-stage oxic process without PHA accumulation, and BPR could be realized in net phosphate removal.  相似文献   

11.
The performance of a 10 L sequencing batch reactor (SBR) treating slaughterhouse wastewater was examined at ambient temperature. The influent wastewater comprised 4672+/-952 mg chemical oxygen demand (COD)/L, 356+/-46 mg total nitrogen (TN)/L and 29+/-10 mg total phosphorus (TP)/L. The duration of a complete cycle was 8 h and comprised four phases: fill (7 min), react (393 min), settle (30 min) and draw/idle (50 min). During the react phase, the reactor was intermittently aerated with an air supply of 0.8L/min four times at 50-min intervals, 50 min each time. At an influent organic loading rate of 1.2g COD/(Ld), average effluent concentrations of COD, TN and TP were 150 mg/L, 15 mg/L and 0.8 mg/L, respectively. This represented COD, TN and TP removals of 96%, 96% and 99%, respectively. Phase studies show that biological phosphorus uptake occurred in the first aeration period and nitrogen removal took place in the following reaction time by means of partial nitrification and denitrification. The nitrogen balance analysis indicates that denitrification and biomass synthesis contributed to 66% and 34% of TN removed, respectively.  相似文献   

12.
Soluble microbial products (SMP) are ubiquitously present in the effluents of biological wastewater treatment systems. In sequencing batch reactor (SBR) systems, effects of influent concentration and temperature on the amount and the molecular weight (MW) distribution of SMP were investigated for the two substrates, glucose and phenol. The values of effluent SMP/S0 of phenol were higher than those of glucose at different influent concentrations and temperatures. It was found that the effluent SMP (Se) was linearly correlated to the influent total organic carbon (TOC) (S0) for both substrates. The slope and intercept of the equation were affected by the temperature. According to the analysis of the MW distribution, it was shown that there exists a bimodal pattern with the majority of SMP having a MW<1 kDa or >10 kDa. The low MW fraction (<1 kDa) amounts to 47.3–70.4% of the effluent SMP. The high MW fraction (>10 kDa) slightly fluctuates in the range of 21.2–32.8% of the effluent SMP.  相似文献   

13.
The aim of this study was to examine nitrogen removal from slaughterhouse wastewater in a laboratory-scale sequencing batch reactor (SBR) operated at low dissolved oxygen (DO) levels under two aeration strategies: intermittent aeration (IA) and continuous aeration (CA). Under the IA strategy, during the aeration periods, the maximum DO was controlled at 10% saturation; under the CA strategy, in the first hour of the react phase, the DO was maintained at 10% saturation, and then it was kept at 2–3% saturation in the remaining react phase. Total nitrogen removals of up to 95 and 91% were achieved under the IA and CA aeration strategies, respectively. It is proposed that in situ measurement of oxygen utilization rates can be used to control the operation of SBRs for nitrogen removal.  相似文献   

14.
A sequencing batch reactor (SBR) was used to remove phosphate in biological wastewater treatment as an alternative to the activated sludge process, in order to improve the low removal efficiency of phosphate and the operational instability. After a cycle of 2 h anaerobic and 4 h aerobic conditions, phosphate removal was optimized. The removal efficiencies of 5 and 50 mg phosphate l–1 by Staphylococcus auricularis under repeated anaerobic and aerobic conditions were above 90%. These results showed that a long adaptation time, one of the major problems in biological phosphate removal process, was overcome by SBR.  相似文献   

15.
A nutrient-removal sequencing batch reactor operated with short anaerobic/aerobic cycles was subjected to different operating conditions, namely, cycle length, feeding pattern and feed composition. The changes in microbial population, as well as the contribution of microbial groups to the total nutrient removal, were estimated using the kinetic parameters obtained in this study. Denitrifying polyphosphate-accumulating organisms (DPAOs) were detected in the system, representing a fraction of 23% of phosphorus-accumulating organisms (PAOs). The results suggest that DPAOs and non-DPAOs are different microorganisms. The presence of nitrate in the feed stimulated DPAOs to predominate over non-DPAOs. Feeding the reactor with a mixture of organic substrates also stimulated DPAOs. Glycogen-accumulating organisms (GAOs) were likely to be present in the system and their development over PAOs was apparently favoured by increasing the aeration time and feeding during the aerobic phase. In contrast, the presence of propanoate in the feed apparently favoured PAOs over GAOs.  相似文献   

16.
The design and development of the neural network (NN)-based controller performance for the activated sludge process in sequencing batch reactor (SBR) is presented in this paper. Here we give a comparative study of various neural network (NN)-based controllers such as the direct inverse control, internal model control (IMC) and hybrid NN control strategies to maintain the dissolved oxygen (DO) level of an activated sludge system by manipulating the air flow rate. The NN inverse model-based controller with the model-based scheme represents the controller, which relies solely upon the simple NN inverse model. In the IMC, both the forward and inverse models are used directly as elements within the feedback loop. The hybrid NN control consists of a basic NN controller in parallel with a proportional integral (PI) controller. Various simulation tests involving multiple set-point changes, disturbances rejection and noise effects were performed to review the performances of these various controllers. From the results it can be seen that hybrid controller gives the best results in tracking set-point changes under disturbances and noise effects.  相似文献   

17.
This study investigated the effects of internal recycling time mode and hydraulic retention time (HRT) on nutrient removal in the sequencing anoxic/anaerobic membrane bioreactor process. Denitrification and phosphorus release were reciprocally dependent on the anoxic/anaerobic time ratio (Ax/An). As Ax/An increased, nitrogen removal rate increased but phosphorus removal rate decreased. The increasing Ax/An provided the longer denitrification period so that the organic substrate were consumed more for denitrification rather than phosphorus release in the limited condition of readily biodegradable substrate. Decreasing HRT increased both nitrogen and phosphorus removal efficiency because as HRT decreased, food-to-microorganism loading ratio increased and thus enhanced the biological capacity and activity of denitrifying bacteria. This could be verified from the observation mixed liquor suspended solids concentration and specific denitrification rate. The change of Ax/An and HRT affected phosphorus removal more than nitrogen removal due to the limitation of favourable carbon source for phosphorus accumulating organisms.  相似文献   

18.
The use of membrane sequencing batch reactors, operated at HRT of 8, 16 and 24 h, was considered for the treatment of a synthetic petroleum wastewater. Increase in HRT resulted in statistically significant decrease in MLSS. Removal efficiencies higher than 97% were found for the three model hydrocarbon pollutants at all HRTs, with air stripping making a small contribution to overall removal. Particle size distribution (PSD) and microscopic analysis showed reduction in the protozoan populations in the activated sludge with decreasing HRT. PSD analysis also showed a higher proportion of larger and smaller sized particles at the lowest HRT. The rate of membrane fouling was found to increase with decreasing HRT; SMP, especially carbohydrate SMP, and mixed liquor apparent viscosity also showed a pronounced increase with decreasing HRT, whereas the concentration of EPS and its components decreased. FTIR analysis identified organic compounds as the main component of membrane pore fouling.  相似文献   

19.
The effect of carbon source addition on the operation of a sequencing batch reactor in order to remove nitrogen and COD of poultry wastewater was studied. The reactor was constructed with a glass tube having a volume of 7 l and a jacket for temperature control. The reactor bottom consisted of a conical porous stone in order to promote liquor aeration and agitation. Initial conditions and operation strategies were adjusted to improve the final effluent quality. According to the attained experimental results, it was verified that nitrification and denitrification can occur simultaneously in aerated culture, contrary the observation of some authors.  相似文献   

20.
Anaerobic fermentation for hydrogen (H2) production was studied in a two-stage fermentation system fed with different ripened fruit feedstocks (apple, pear, and grape). Among the feedstocks, ripened apple was the most efficient substrate for cumulative H2 production (4463.7 mL-H2 L−1-culture) with a maximum H2 yield (2.2 mol H2 mol−1 glucose) in the first stage at a hydraulic retention time (HRT) of 18 h. The additional cumulative biohydrogen (3337.4 mL-H2 L−1-culture) was produced in the second stage with the reused residual substrate from the first stage. The major byproducts in this study were butyrate, acetate, and ethanol, and butyrate was dominant among them in all test runs. During the two-stage system, the energy efficiency (H2 conversion) obtained from mixed ripened fruits (RF) increased from 4.6% (in the first stage) to 15.5% (in the second stage), which indicated the energy efficiency can be improved by combined hydrogen production process. The RF could be used as substrates for biohydrogen fermentation in a two-stage (dark/dark) fermentation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号