首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Planktonic nitrogen fixation in Lake Malawi/Nyasa   总被引:1,自引:0,他引:1  
Nitrogen (N2) fixation has been identified as possibly an important source of “new” nitrogen (N) to the epilimnion of Lake Malawi but studies in 1999–2000 and 2002 (September–December) estimated that the contribution of N2-fixation by heterocystous Anabaena filaments to the N budget of the lake’s epilimnion is only 3–4% of total N input. N2-fixation rates in Lake Malawi, as estimated by the acetylene reduction assay were higher during the stratified season (September–March) than during the rest of the year. Planktonic N2-fixation in Lake Malawi can be monitored by measuring heterocyst biovolume concentrations because a significant correlation (r 2 = 0.945, P < 0.0001) was observed between the two parameters. Heterocyst density cannot be used to estimate N2-fixation because heterocyst sizes in the lake change continuously as at least two Anabaena species with different heterocyst dimensions are present. During September–October 2002, a species similar to A. maxima, contained larger heterocysts (16.34 ± 2.46 and 13.25 ± 1.89 μm in cross and apical section dimensions, respectively). In November–December of 2002, A. discoidea dominated and had smaller sized heterocysts (8.92 ± 1.13 and 7.25 ± 0.95 μm in cross and apical section dimensions). Since planktonic N2-fixation is higher near shore than offshore, its contribution to the N budget in the littoral zone where high densities of grazing benthic fish occur may be more critical to maintaining the high rates of benthic algal productivity observed.  相似文献   

2.
2,4-Dichlorophenoxyacetic acid (2,4-D) stimulated growth and heterocyst differen- tiation ofNostoc linckia in nitrogen-free medium at lower concentrations (100 μ.g/mL) while its higher concentrations inhibited both processes and 1500 μg/mL proved to be lethal. Dry mass and specific growth rate of the alga declined with increasing concentration of 2,4-D in the range of 100–1500 μg/mL. Glucose slightly increased the heterocyst frequency without any lag in their differentiation. Tryptophan promoted growth of the alga, and formation of heterocysts (nearly three-fold). Tryptophan (50 μg/mL) complex medium with 1 mg 2,4-D per mL did not produce mature heterocysts. The filaments were fragmented at the point of hererocyst development and detached heterocysts germinatedin situ. Glucose and tryptophan protected the alga, its growth and heterocyst differentiation even at the lethal concentration of the herbicide. We are grateful to the Head, Department of Botany,Banaras Hindu University, Varanasi, for providing the necessary facilities. The first author is also grateful to the Principal,K.D. College, Kutir-Chakkey, Jaunpur, for his interest in this study.  相似文献   

3.
4.
N-Pyridylaminomethylenebisphosphonic acids constitute a class of promising herbicides. Since their mode of action at the cellular level is still poorly understood, we studied the influence of N-pyridylaminomethylenebisphosphonic acids on plant growth, at the whole plant and undifferentiated tissue levels, using seedlings and cell suspension cultures of mono- and dicotyledonous species. These compounds exhibited strong herbicidal properties, being equipotent with the popular herbicide glyphosate. Since they also depressed buckweed anthocyanin biosynthesis, the shikimate pathway could represent a site of action of N-pyridylaminomethylenebisphosphonic acids.Abbreviations EPSP 5-enol-pyruvylshikimate-3-phosphate - 2,4-D 2,4-dichlorophenoxyacetic acid.  相似文献   

5.
Summary The toxicity of chromium and tin on growth, photosynthetic carbon-fixation, oxygen evolution, heterocyst differentiation and nitrogenase activity ofAnabaena doliolum and its interaction with bivalent cations has been studied. Some interacting cations, viz. Ca2+, Mg2+ and Mn2+, substantially antagonised the toxic effects of chromium and tin with reference to growth, heterocyst differentiation and nitrogenase activity in the following hierarchal sequence: Ca2+ > Mg2+ > Mn2+. However, the sequence of hierarchy was Mg2+ > Ca2+ > Mn2+ for carbon fixation and Mn2+ > Mg2+ > Ca2+ for photosynthetic oxygen evolution. Synergistically inhibitory patterns were noticed for all the parameters, viz. growth,14CO2 uptake, oxygen evolution, heterocyst differentiation and nitrogenase activity ofA. doliolum when Ni2+, Co2+ and Zn2+ were combined with the test metals in the growth medium. These cations followed the following sequence of synergistic inhibition: Ni2+ > Co2+ > Zn2+. Among all the interacting cations, Ca2+, Mg2+ and Mn2+ exhibited antagonistic effects which relieved the test cyanobacterium from metal toxicity. In contrast to this, Ni2+, CO2+ and Zn2+ showed synergistic inhibition which potentiating the toxicity of test metals in the N2-fixing cyanobacteriumA. doliolum. It is evident from the present study that bivalent cations, viz. Ca2+, Mg2+, Mn2+, Ni2+, Co2+ and Zn2+, may appreciably regulate the toxicity of heavy metals in N2-fixing cyanobacteria if present in aquatic media.  相似文献   

6.
Summary The effect of graded concentrations of four common ricefield herbicides (Arozin, Butachlor, Alachlor, 2,4-D) on diazotrophic growth, macromolecular contents, heterocyst frequency and tolerance potentials of Ca-alginate immobilized diazotrophic cyanobacterial isolates Nostoc punctiforme, N. calcicola, Anabaena variabilis, Gloeocapsasp., Aphanocapsa sp. and laboratory strain N. muscorum ISU (Anabaena ATCC 27893) was studied and compared with free-living cultures. Cyanobacterial isolates showed progressive inhibition of growth with increasing dosage of herbicides in both free and immobilized states. There were significant differences in the relative toxicity of the four herbicides. Arozin proved to be more growth toxic in comparison to Alachlor, Butachlor and 2,4-D. Growth performance of the immobilized cyanobacterial isolates under herbicide stress showed a similar diazotrophic growth pattern to free cells with no difference in lethal and sub-lethal dosages. However, at lethal concentrations of herbicides, the immobilized cells exhibited prolonged survivability of 14–16 days as compared to their free-living counterparts (8–12 days). The decline in growth, macromolecular contents and heterocyst frequency was found to be similar in both the states in graded dosages of herbicides. Of the test organisms, A. variabilis showed maximum natural tolerance towards all the four herbicides tested. Evidently immobilization by Ca-alginate seems to provide protection to the diazotrophic cyanobacterial inoculants to a certain extent against the growth-toxic action of herbicides.  相似文献   

7.
N,N′-Dicyclohexylcarbodiimide (DCCD), an inhibitor of membrane-bound ATPase, strongly inhibited the growth, as measured by an increase in cell number, of Dunaliella tertiolecta. However, this inhibition was reversed by simultaneous application of adenosine 5′-triphosphate (ATP) or adenosine 2′-monophosphate (2′-AMP). Adenosine and adenosine 5′-diphosphate (ADP) were ineffective in restroration of the DCCD-inhibited growth. Gibberellin A3 (GA3) and 2,4- dichlorophenoxyacetic acid (2,4-D) also reversed the inhibition of DCCD on D. tertiolecta growth, although these plant growth regulators did not promote an increase in cell number.  相似文献   

8.
Summary A study was made of the effects of the herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and MCPA (4-chloro-2-methyl-phenoxyacetic acid) on ion uptake, leakage and growth of rice seedlings. Using isotopically-labelled solutions containing different concentrations of 2,4-D or MCPA, it was established that 10–4 M 2,4-D or MCPA effectively inhibited potassium ion uptake, while K-ion leakage from the roots occurred only at 10–3 M. The growth of the rice seedlings was markedly retarded even at low (10–6 M) concentrations, and the roots and shoots showed different tolerances to the herbicide. At 10–8 M herbicide, the effects were not injurious, but rather favourable. Reduction in root length by herbicides was not in accordance with dry-matter production.  相似文献   

9.
A Tn5-1063-derived mutant of Nostoc punctiforme strain ATCC 29133 was unable to fix N2 in air although it reduced acetylene in the absence of O2. Mutant strain UCD 307 formed cells morphologically similar to heterocysts, but it failed to synthesize the characteristic heterocyst glycolipids. Sequence analysis around the site of insertion revealed an ORF of 3,159 base pairs, termed hglE. hglE putatively encodes a 115.4-kDa protein containing two domains with conserved amino acid sequences identified with acyl transferase and the chain length factor variation of β-ketoacyl synthase active sites. These active sites are characteristic of polyketide and fatty acid synthases. The N. punctiforme strain 29133 hglE gene is transcribed only under nitrogen-limiting growth conditions. The hglE gene, or similar sequences, was found in all other heterocyst-forming cyanobacteria surveyed and was absent in unicellular Synechococcus sp. strain PCC 7942. Based on these results, we propose that the synthesis of heterocyst glycolipids follows a pathway characteristic of polyketide synthesis and involves similar large, multienzyme complexes. Received: 4 November 1996 / Accepted: 6 January 1997  相似文献   

10.
Bacterial isolates (NJ 10 and NJ 15) capable of degrading the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were isolated from agricultural soil by enrichment culture technique. The isolates exhibited substantial growth in mineral salt medium supplemented with 0.1–0.5% of 2,4-D as a sole source of carbon and energy. Based on their morphological, cultural and biochemical characteristics, the isolates NJ 10 and NJ 15 have been identified as Pseudomonas species and Pseudomonas aeruginosa, respectively. Biodegradation studies in a soil microcosm enriched with pure cultures of the isolates demonstrated a time-dependent disappearance of 2,4-D from the 100 mg/kg herbicide-amended soil. The HPLC data analysis revealed 96.6 and 99.8% degradation in the soil inoculated with the pure cultures of isolates NJ 10 and NJ 15, respectively with in 20 days of incubation at 30 °C. Both the isolates showed significant solubilization of inorganic phosphate [Ca3(PO4)2] on the specific Pikovskaya's medium.  相似文献   

11.
The herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D) causes uncontrolled cell division and malformed growth in plants, giving rise to leaf epinasty and stem curvature. In this study, mechanisms involved in the regulation of leaf epinasty induced by 2,4‐D were studied using different chemicals involved in reactive oxygen species (ROS) accumulation (diphenyleniodonium, butylated hydroxyanisole, EDTA, allopurinol), calcium channels (LaCl3), protein phosphorylation (cantharidin, wortmannin) and ethylene emission/perception (aminoethoxyvinyl glycine, AgNO3). The effect of these compounds on the epinasty induced by 2,4‐D was analysed in shoots and leaf strips from pea plants. For further insight into the effect of 2,4‐D, studies were also made in Arabidopsis mutants deficient in ROS production (rbohD, rbohF, xdh), ethylene (ein 3‐1, ctr 1‐1, etr 1‐1), abscisic acid (aba 3.1), and jasmonic acid (coi 1.1, jar 1.1, opr 3) pathways. The results suggest that ROS production, mainly ·OH, is essential in the development of epinasty triggered by 2,4‐D. Epinasty was also found to be regulated by Ca2+, protein phosphorylation and ethylene, although all these factors act downstream of ROS production. The use of Arabidopsis mutants appears to indicate that abscisic and jasmonic acid are not involved in regulating epinasty, although they could be involved in other symptoms induced by 2,4‐D.  相似文献   

12.
Pesticidal effect on soybean-rhizobia symbiosis   总被引:2,自引:0,他引:2  
Summary Relative compatibility of selected pesticides at two levels of application (recommended rate and 5× or 10 ×) with soybean-rhizobia symbiosis was tested in pot culture experiments using a prepared peat inoculant.PCNB, carboxin and carboxin+captan at recommended level were innocuous to growth, nodulation, N2-fixation and total N content of shoot. Carboxin and carboxin+captan but not PCNB at 10 times recommended level proved detrimental to nodulation and N2-fixation. Carbaryl and malathion at recommended level had no adverse effect but at 10 times recommended level severely reduced N2-fixation but not other parameters. Acephate, diazinon and toxaphene at both levels reduced N2-fixation and total N content but not growth and nodulation. All five herbicides used at recommended and 5 times recommended level adversely affected nodulation and N2-fixation. Glyphosate proved least toxic to all parameters. 2,4-DB at recommended level was less harmful to nodulation and N2-fixation than trifluralin, alachlor and metribuzin.  相似文献   

13.
The N2, NO 3 , NO 2 , NH 4 + and glutamine growing cultures of parentNostoc muscorum are found more or less equally sensitive to azide inhibition of growth. A mutant strain resistant to sodium azide was isolated from the parent strain in NO 3 medium and the two strains were compared with regard to their heterocyst formation and nitrogenase activity in NO 3 , NO 2 , NH 4 + and glutamine media. While the parent strain stops production of both heterocyst and nitrogenase in all the fixed nitrogen media, the azide resistant strain forms both in the fixed inorganic nitrogen media but only heterocyst and no nitrogenase in the glutamine medium. Clearly a single genetic determinant of regulatory nature appears to mediate azide-resistance as well as relief of heterocyst and nitrogenase formation from inhibition by the fixed inorganic nitrogen source. The results of glutamine effect on the heterocyst and nitrogenase formation of the two strains indicate the operation of two levels of glutamine-sensitive regulation, one which operates through the common genetic determinant of heterocyst and nitrogenase regulation and the other exclusive to nitrogenase regulation. The in vivo functional nitrogenase does not appear to be the reason for azide-resistance and neither ammonia nor glutamine or its close metabolic product seems to function in the control of heterocyst spacing.  相似文献   

14.
Nitrogen fixation was investigated by means of the acetylene reduction method during the development of a water bloom of Nodularia in coastal waters of the Baltic Sea west of the island of Hiddensee and in backwaters showing different degrees of eutrophication. Depending on plankton density, the values found varied greatly. The maximum of nitrogen fixation values found in extremely dense water blooms under special conditions (Baltic Sea, 2250 μg N2/l · h; Kleiner Jasmunder Bodden, 374 μg N2/l · h) are up to 103 times higher than from other parts of the Baltic Sea or from inland waters. The average nitrogenase activity determined for coastal water populations of the Baltic Sea is 2.15 pg N2/heterocyst · h and that of the inmost backwaters 0.77 pg N2/heterocyst · h. The relationship between N2-fixation and nutrient content in water is discussed.  相似文献   

15.
Anabaena torulosa exhibited fructose-dependent growth, heterocyst differentiation and N2 fixation in nitrate-free (diazotrophic) cultures in photoheterotrophic and chemoheterotrophic conditions. The incorporation of nitrate into such cultures inhibited the formation of heterocysts and N2 fixation. The rate of NO 3 uptake byA. torulosa in photoautotrophic, photoheterotrophic and chemoheterotrophic conditions was similar but it increased by 100% in phototrophic conditions. The activity of glucose-6-phosphate dehydrogenase was found to be maximum in phototrophic and photoheterotrophic conditions. Ferredoxin-NADP+ reductase, nitrate reductase and glutamate-ammonia ligase activities suggest that nitrate utilization takes place in nonphotosynthetic conditions.  相似文献   

16.
Distribution pattern and levels of nitrogenase (EC 1.7.99.2) and glutamine synthetase (GS, EC 6.3.1.2) were studied in N2-, NO3? and NH4+ grown Anabaena cylindrica (CCAP 1403/2a) using immunogold electron microscopy. In N2- and NO3? grown cultures, heterocysts were formed and nitrogenase activity was present. The nitrogenase antigen appeared within the heterocysts only and showed an even distribution. The level of nitrogenase protein in the heterocysts was identical with both nitrogen sources. In NO3? grown cells the 30% reduction in the nitrogenase activity was due to a corresponding decrease in the heterocyst frequency and not to a repressed nitrogenase synthesis. In NH4? grown cells, the nitrogenase activity was almost zero and new heterocysts were formed to a very low extent. The heterocysts found showed practically no nitrogenase protein throughout the cytoplasm, although some label occurred at the periphery of the heterocyst. This demonstrates that heterocyst differentiation and nitrogenase expression are not necessarily correlated and that while NH4+ caused repression of both heterocyst and nitrogenase synthesis, NO3? caused inhibition of heterocyst differentiation only. The glutamine synthetase protein label was found throughout the vegetative cells and the heterocysts of all three cultures. The relative level of the GS antigen varied in the heterocysts depending on the nitrogen source, whereas the GS level was similar in all vegetative cells. In N2- and NO3+ grown cells, where nitrogenase was expressed, the GS level was ca 100% higher in the heterocysts compared to vegetative cells. In NH4+ grown cells, where nitrogenase was repressed, the GS level was similar in the two cell types. The enhanced level of GS expressed in heterocysts of N2 and NO3? grown cultures apparently is related to nitrogenase expression and has a role in assimilation of N2derived ammonia.  相似文献   

17.
Khan  N.A. 《Photosynthetica》2004,42(3):477-480
The pattern of activity of 1-aminocyclopropane carboxylic acid synthase (ACS) was similar to photosynthetic and growth traits observed at 30, 45, and 60 d after sowing in mustard (Brassica juncea L.) cultivars Varuna and RH 30 differing in photosynthetic capacity. Higher activity of ACS and therefore ethylene release in Varuna than RH 30 increased stomatal conductance, intercellular CO2 concentration, carboxylation rate (carbonic anhydrase and intrinsic water use efficiency), and thus net photosynthetic rate (P N) and leaf and plant dry masses (DM) at all sampling times. Moreover, Varuna also had larger leaf area which contributed to higher P N and DM. A positive correlation between ACS activity and P N and leaf area was found in both the cultivars. Thus ACS activity may affect P N through ethylene-induced changes on foliar gas exchange and leaf growth.  相似文献   

18.
W. Hüsemann 《Protoplasma》1981,109(3-4):415-431
Summary This communication reports the photoautotrophic growth of hormone and vitamin independent cell suspension cultures ofChenopodium rubrum. The transfer of cells from stationary growth into fresh culture medium results in a high protein formation, followed by an exponential phase of cell division, whereas the onset of rapid chlorophyll formation is delayed for 4 days. At the stage of most rapid cell division there is no net synthesis of starch and sugar. When the cells enter stationary growth, there is a progressive accumulation of chlorophyll, sugar, and starch.Photoautotrophic cell cultures assimilate about 80–90 mol CO2/mg chlorophyll X hour. Dark CO2 fixation is about 3.7% to 2.2% of the light values during exponential and stationary growth, respectively. As shown by short-term14CO2 fixation, CO2 is predominantly assimilated through ribulosebisphosphate carboxylase via the Calvin pathway. There is a significant increase in the14C label of C4 carboxylic acids in exponentially dividing cells as compared to cells from stationary growth. Thein vitro activity of phosphoenolpyruvate carboxylase and ribulosebisphosphate carboxylase is almost equal during exponential cell division. A decrease in cell division activity is accompanied by a significant change in the specific activities of both carboxylation enzymes. In non dividing cells from stationary growth the activity of ribulosebisphosphate carboxylase is greately enhanced and that of phosphoenolpyruvate carboxylase is reduced, documenting the development of carboxylation capacities typical for C3-plants.The experimental results provide evidence that phosphoenolpyruvate carboxylase activity might be regulated by ammonia and could be involved in anaplerotic CO2 fixation which supplies carbon skeletons of the citric acid cycle.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - FDP fructose bisphosphate - F-6-P fructose-6-phosphate - G-6-P glucose-6-phosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenolpyruvate - RuDP ribulosebisphosphate  相似文献   

19.
A marine filamentous cyanobacterium capable of rapid growth under N2-fixing conditions has been isolated from the Texas Gulf Coast. This organism appears to be an Anabaena sp. and has been given the strain designation CA. Cultures grown on mineral salts medium bubbled with 1% CO2-enriched air at 42°C show a growth rate of 5.6±0.1 generations per day with molecular nitrogen as the sole nitrogen source. This growth rate is higher than any other reported in the literature to date for heterocystous cyanobacteria growing on N2. Under similar growth conditions, 7.5 mM NH4Cl yields a growth rate of 6.6±0.1 generations per day while 7.5 mM KNO3 allows for a growth rate of 5.8±0.4 generations-day. Nitrogen-fixation rates, as measured by acetylene reduction, show maximum activity values in the range of 50–100 nmoles ethylene produced/minxmg protein. These values compare favorably with those obtained from heterotrophic bacteria and are much higher than values reported for other cyanobacteria. Growth experiments indicate that the organism requires relatively high levels of sodium and grows maximally at 42°C. Because of its high growth rate on N2, this newly isolated organism appears ideal for studying nitrogen metabolism and heterocyst development among the cyanobacteria.  相似文献   

20.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号