首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in photosynthetic activity, CO2 assimilation rate, PSII by fluorescence andABA content, were monitored in the grasses Eragrostis curvula cv. Consol and Sporobolusstapfianus Gandoger in response to dehydration. Thefirst being a warm season grass well adapted todrought and the second a desiccation-tolerant orresurrection plant. The trial was performed on intactleaves during a whole plant drying course. After acycle of dehydration (down to 5% RWC) andrehydration to full turgor the resurrection plantshowed recovery of photosynthetic capability. E.curvula is drought-resistant but notdrought-tolerant being not capable of recovering whendried to 20% RWC. The sensitivity of photosynthesisto the drying treatment was different in E.curvula and S. stapfianus. During dryingtreatment, up to a leaf water loss of 40%, E.curvula photosynthesis seemed to be inhibited bycarbon metabolism, because PSII activity was not yetaffected. In S. stapfianus at the same point ofdehydration photosynthesis still worked though adown-regulation of PSII activity (Fv/Fm) occurred ata higher RWC. Non-photochemical chlorophyllfluorescence quenching (qN) was analysed. Duringdrying qN increased in both plants, but more in theresurrection plant though its assimilation rate wasless affected. The importance of ABA in regulating CO2 assimilation rate is discussed.  相似文献   

2.
Saccharomyces cerevisiae CBS 426 was grown in continuous culture in a defined medium with a mixture of glucose and ethanol as carbon source. Growth on ethanol as the sole carbon source was only possible after the addition of a small amount of glutamic acid. The flows of glucose, ethanol, oxygen, carbon dioxide and biomass to and from the system were measured and a model for the growth of the yeast on the carbon sources constructed. The model is shown to allow independent estimation of YATP and P/O. YATP is not independent of the substrate used, but the amount of ATP used in the production of biomass from the monomers is approximately the same for growth on ethanol and on glucose.Nomenclature C chemical state vector - Ci component of the chemical state vector (C-mol) - Cx biomass present in the system (C-mol biomass) - H2 reduction equivalents (NAD(P)H + H+ and FADH2) - k the amount of ATP required in the production of 1 C-mol of biomass from the monomers (mol ATP/C-mol biomass) - mATP maintenance requirement for ATP (mol ATP/C-mol biomass·h) - P/O (=), efficiency of the oxidative phosphorylation (mol ATP/atom O) - r vector of reaction rates - ri component of the vector of reaction rates (C-mol/h) - rATP rate of ATP production (mol ATP/h) - rx rate of biomass production (C-mol biomass/h) - YATP YATP growth yield on ATP (C-mol biomass/mol ATP) - (YATP)max maximum growth yield on ATP - stoichiometry matrix - P/O - vector of the flows to the system - s flow of glucose to the system (C-mol glucose/h) - o flow of oxygen to the system (mol O2/h) - c flow of carbon dioxide to the system (mol CO2/h) - x flow of biomass to the system (C-mol biomass/h) - e flow of ethanol to the system (C-mol ethanol/h) - w flow of water produced during metabolism (mol H2O/h)  相似文献   

3.
    
The-galactosidase fromThermoanaerobacterium thermosulfurigenes EM1 was found to be a dimer with a monomer molecular weight of about 85,000. It lacks the-peptide and an important-helix that are both needed for dimer-dimer interaction and there is no homology in other important dimer-dimer interaction areas. These differences in structure probably account for the dimeric (rather than tetrameric) structure. Only 0.19 Mg2+ bound per monomer and Mg2+ had only small effects on the activity and heat stability. The absence of residues equivalent to Glu-416 and His-418 (two of the three ligands to Mg2+ in the-galactosidase fromEscherichia coli) probably accounts for the low level of Mg2+ binding and the consequent lack of response to Mg2+. Both Na+ and K+ also had no effect on the activity. The enzyme activity witho-nitrophenyl--D-galactopyanoside (ONPG) was very similar to that withp-nitrophenyl--D--D-galactopyranoside (PNPG) and the ONPG pH profile was very similar to the PNPG pH profile. These differences are in contrast to theE. coli -galactosidase, which dramatically discriminates between these two substrates. The lack of discrimination by theT. thermosulfurigenes -galactosidase could be due to the absence of the sequence equivalent to residues 910-1023 of theE. coli -galactosidase. Trp-999 is probably of the most importance. Trp-999 of theE. coli -galactosidase is important for aglycone binding and ONPG and PNPG differ only in their aglycones. The suggestion that the aglycone site of theT. thermosulfurigenes -galactosidase is different was strengthened by competitive inhibition studies. Compared toE. coli -galactosidase, D-galactonolactone was a very good inhibitor of theT. thermosulfurigenes enzyme, while L-ribose inhibited poorly. These are transition-state analogs and the results indicate thatT. thermosulfurigenes -galactosidase binds the transition state differently than doesE. coli -galactosidase. Methanol and glucose were good acceptors of galactose, and allolactose was formed when glucose was the acceptor. Allolactose could not, however, be detected by TLC when lactose was the substrate. The differences noted may be due to the thermophilic nature ofT. thermosulfurigenes.  相似文献   

4.
The -anomer of glucose relative to the -anomer was more rapidly metabolized into lactate by rat erythrocytes at 37° C (/ ratio = ca. 1.3): the amounts of - and -D-glucose metabolized into lactate during 3 min were 0.21 and 0.27 mol/gHb, respectively. Also, the transport of -D-glucose into erythrocytes was more rapid than that of -D-glucose: the amounts of - and -D-glucose transported into erythrocytes during 3 min were approximately 3.5 and 5.0 mol/gHb, respectively. Glucose phosphorylation by rat erythrocyte hexokinase (i.e., a possible rate-limiting step in glycolysis) occurred at higher velocities with the -anomer than with the a-anomer (/ ratio = 1.28). The Km value of hexokinase for either anomer of glucose was 53 M. The glucose concentrations in erythrocytes incubated with - and -D-glucose reached about 1 mM in 1 min, indicating that hexokinase is almost completely saturated with glucose within less than 1 min. The results suggest that glucose phosphorylation and glucose transport are major and minor determinants, respectively, for the anomeric preference of glucose utilization in rat erythrocytes.  相似文献   

5.
The effects of Cu2+ on glycolysis and several glycolytic enzymes were studied in rat brain extracts in vitro. At concentrations reportedly found in Wilson's disease, Cu2+ significantly inhibited lactate production from glucose or glucose-6-phosphate in rat brain postnuclear supernatant with an IC50 of about 3 M. Cu2+ also inhibited several glycolytic enzymes. Amongst the latter, Cu2+ was most effective in inhibiting hexokinase (IC50 for Cu2+=7 M), moderately effective in inhibiting pyruvate kinase (IC50 for Cu2+=56 M), but least effective in inhibiting lactate dehydrogenase (IC50 for Cu2+=300 M). These results suggest that inhibition of brain glycolysis may have pathophysiological importance in copper poisoning and in Wilson's disease.  相似文献   

6.
ATP hydrolysis by a partially purified (Ca+Mg)-ATPase preparation from rat brain increased with substrate concentration in a biphasic fashion, with apparentK m values of 3 M and 0.1 mM. Ca-dependent phosphorylation, however, had only a singleK m value, 3 M. KCl increased ATPase activity in both concentration ranges, but theK 0.5 for KCl decreased from 7 mM to 0.3 mM as the ATP concentration was reduced from 1 mM to 10 M. TheK 0.5 for MgCl2 decreased somewhat less, from 3 mM to 0.6 mM with ATP concentrations from 1 mM to 1 M, but was far lower for steady-state phosphorylation, 0.03 mM. (Ca+Mg)-dependent hydrolysis was not demonstrable with other nucleotide triphosphates or p-nitrophenyl phosphate, and these substances, as well as a reaction product, Pi, were also inhibitors. On the other hand, ADP inhibited at both ATP concentration ranges, and also stimulated dephosphorylation. This pattern of responses to substrate and cations is reminiscent of that of well-characterized transport ATPases, suggesting similar roles and mechanisms.  相似文献   

7.
Dissociated single fibers from the mouse flexor digitorum brevis (FDB) muscle were used in patch clamp experiments to investigate the mechanisms of activation and inactivation of KATP in mammalian skeletal muscle. Spontaneous rundown of channel activity, in many excised patches, occurred gradually over a period of 10–20 min. Application of 1.0 mm free-Ca2+ to the cytoplasmic side of the patch caused irreversible inactivation of KATP within 15 sec. Ca2+-induced rundown was not prevented by the presence of 1.0 m okadaic acid or 2.0 mg ml of an inhibitor of calcium-activated neutral proteases, a result consistent with the conclusion that phosphatases or calcium-activated neutral proteases were not involved in the rundown process. Application of 1.0 mm Mg.ATP to Ca2+inactivated KATP caused inhibition of residual activity but little or no reactivation of the channels upon washout of ATP, even in the presence of the catalytic subunit of cyclic AMP-dependent protein kinase (10 U ml–1). Mg.ATP also failed to reactivate KATP, even after only partial spontaneous rundown, despite the presence of channels that could be activated by the potassium channel opener BRL 38227. Nucleotide diphosphates (500 m; CDP, UDP, GDP and IDP) caused immediate and reversible opening of Ca2+-inactivated KATP. Reactivation of KATP by ADP (100 m) increased further upon removal of the nucleotide. In contrast to KATP from cardiac and pancreatic cells, there was no evidence for phosphorylation of KATP from the surface sarcolemma of dissociated single fibers from mouse skeletal muscle. The small degree of activation occasionally observed following application of 10 m or 1.0 mm Mg.ATP could have been due to the generation of ADP from ATP hydrolysis and not through phosphorylation. Data are consistent with the suggestion that Ca2+ inactivation of KATP involves a gating mechanism that can be reopened by nucleotide diphosphates.M.H. is supported by the Medical Research Council.  相似文献   

8.
Summary Insulin binding to human placenta membranes treated at pH 7.6 or 8.5 in the presence or absence of 2.0mm DTT for 5 min, followed by the simultaneous removal of the DTT and pH adjustment to pH 7.6, displayed curvilinear (heterogeneous) insulin binding plots when analyzed by the method of Scatchard. However, Triton X-100 solubilization followed by Bio-Gel A-1.5m gel filtration chromatography of the placenta membranes previously treated with DTT at pH 8.5 generated a nearly straight line (homogeneous) Scatchard plot.125I-insulin affinity crosslinking studies coupled with Bio-Gel A-1.5m gel filtration chromatography demonstrated that the alkaline pH and DTT treatment of placenta membranes followed by detergent solubilization generated an heterodimeric insulin receptor complex from the 22 heterotetrameric disulfide-linked state. The ability of alkaline pH and DTT to produce a functional heterodimeric insulin receptor complex was found to be time dependent with maximal formation and preservation of tracer insulin binding occurring at 5 min. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of placenta membranes can result in the formation of a functional heterodimeric insulin receptor complex. (ii) the heterodimeric complex displays homogeneous insulin binding. (iii) the insulin receptor membrane environment maintains the 22 association state, which displays heterogeneous insulin binding, despite reduction of the critical domains that are responsible for the covalent interaction between the heterodimers.Abbreviations used are ATP adenosine 5-triphosphate - DTT dithiothreitol - SDS sodium dodecyl sulfate - DSS disuccinimidyl suberate - NEM N-ethylmaleimide - IGF-I insulin-like growth factor-I - EDTA ethylenediaminetetraacetic acid - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid  相似文献   

9.
Sweet potato (Ipomoea batatas L.) embryos excised from the fertilized ovules of 6- to 12-day-old capsules were cultured on MS medium supplemented with NAA, BA, GA separately and in combinations. GA was found essential for initial morphogenesis of globular and heart stages. Seedlings were recovered from late globular stage onwards but recovery was best from advanced embryo stages. Differentiated embryos produced multiple shoots on MS medium +1M NAA÷2M BA +0.5M GA.  相似文献   

10.
Synaptosomal membranes accumulate 3–6 times more Ca2+ in the presence of ATP (50–1000 M) than basal Ca2+ accumulation (-ATP). The location of this Ca2+ accumulation appears to reside on the cytosolic face of the synaptosome since lysed synaptosomes accumulate 4-times more Ca2+ than intact synaptosomes. The inclusion of mitochondrial inhibitors, oligomycin (0.7 g/ml), sodium azide (100 M) and dinitrophenol (100 M) differentiate mitochondrial from nonmitochondrial Ca2+ accumulation under conditions that are [Ca2+]- and ATP-dependent. In the presence of low concentrations of ATP (<150 M) and Ca free 2+ (2.5 or 6.8 M), Ca2+ accumulation occurs as one process in both lysed synaptosomal membranes and purified synaptic plasma membranes in the presence and/or absence of MI. When ATP levels are increased (>200 M), the Ca2+ accumulation process remains independent of the presence of mitochondrial inhibitors when Ca free 2+ =2.5 M. When Ca free 2+ is increased to 6.8 M, mitochondrial inhibitors differentiate mitochondrial from nonmitochondrial accumulation. These studies suggest that optimal conditions for the measurement of Ca2+ accumulating mechanisms in synaptosomal membranes depend on both [Ca2+] and ATP. Use of these assay conditions provide evidence that ATP-dependent Ca2+ uptake may be a viable mechanism for the regulation of synaptosomal Ca2+ levels.  相似文献   

11.
Summary Candida pelliculosa var. acetaetherius is a strain of yeast which can utilize cellobiose as the carbon source. From a gene library prepared from this yeast, the -glucosidase gene has been cloned in a S. cerevisiae host using a chromogenic substrate, 5-bromo-4-chloro-3-indolyl--glucoside as an indicator. It was proved by Southern analysis that the DNA fragment carrying the -glucosidase gene originated from C. pelliculosa. -Glucosidase produced by S. cerevisiae transformants was secreted into the periplasmic space. In Candida, -glucosidase was not induced by cellobiose but was derepressed by lowering the concentration of glucose. The regulation of -glucosidase synthesis in S. cerevisiae carrying the cloned -glucosidase was not clear compared with that in Candida, however, the enzyme activity in low glucose medium (0.05%) was reproducibly higher than in high glucose medium (2%). We have found the sequence that controls the expression of the -glucosidase gene negatively in S. cerevisiae.  相似文献   

12.
3-O-(4-benzoyl)benzoyl ATP (BzATP) was used as a photoaffinity analog of ATP to label potential ATP receptors in ciliated cells. Like ATP, without photoactivation, BzATP stimulated the ciliary beat frequency in tissue culture up to threefold. Irradiation of intact cells in the presence of [-32P]BzATP followed by SDS-PAGE and autoradiography revealed two labeled proteins with molecular masses of 46 and 96 kDa (p46 and p96). Photolabeling of both proteins was susceptible to digestion with trypsin, implying that the labeled proteins are at least partially exposed on the extracellular surface of the plasma membrane. The dependence of 32P incorporation in both proteins on [-32P]BzATP concentration was similar. Labeling of p46 but not p96 required Ca2+ or Mg2+. Various nucleotides stimulated the ciliary frequency, and inhibited the photolabeling of p46 and p96. The rank order of apparent affinity for p46 is: ATP ÃDP>GTPS>ADP S, UTP, 2MeSATP, AMP-PNP >AMP-PCP>AMP>adenosine; for p96 it is: ADPADP S ATP AMP-PCP, AMP-PNP>GTPS AMP>2MeSATP, UTP, adenosine. The rank of stimulation of ciliary beat frequency is: ADPS, UTP 2MeSATP, GTPS, AMP-PNP, ATPADP>AMPPCP>adenosine>AMP. These results suggest the involvement of p46 in the stimulatory effect of extracellular ATP on the ciliary beat, as a P2 purinoceptor. On the other hand, p96 may represent a P2 purinoceptor or an ectonucleotidase.This work was supported by grants (to Z.P. and to V.S-B.) from the Fund for Basic Research administered by the Israel Academy of Science and Humanities.  相似文献   

13.
The parasitoid Pimpla turionellae L. (Hymenoptera, Ichneumonidae) was fed on Cd, Pb and Cd+Pb-contaminated food (33g Cd, 82g Pb and 33g Cd+82g Pb per gram food fresh weight, respectively). Significant decrease in the total lipid and protein content was found along with an increase in the water content particularly in Cd-contaminated parasitoids.  相似文献   

14.
In washed cells of cadmium-sensitive Staphylococcus aureus 17810S oxidizing glutamate, initial Cd2+++ influx via the Mn2+ porter down membrane potential () was fast due to involvement of energy generated by two proton pumps—the respiratory chain and the ATP synthetase complex working in the hydrolytic direction. Such an unusual energy drain for rapid initial Cd2+ influx is suggested to be due to a series of toxic events elicited by Cd2+ accumulation down generated via the redox proton pump: (i) strong inhibition of glutamate oxidation accompanied by a decrease of electrochemical proton gradient ( H +) formation via the respiratory chain, (ii) automatic reversal of ATP synthetase from biosynthetic to hydrolytic mode, which was monitored by a decrease of H +-dependent ATP synthesis, (iii) acceleration of the initial Cd2+ influx down generated the reversed ATP synthetase, the alternative proton pump hydrolyzing endogenous ATP. The primary, cadmium-sensitive targets in strain 17810S seem to be dithiols located in the cytoplasmic glutamate oxidizing system, prior to the membrane-embedded NADH oxidation system. Inhibition by Cd2+ of H +-dependent ATP synthesis and of pH gradient (pH)-linked [14C]glutamate transport is a secondary effect due to cadmium-mediated inhibition of H + generation at the cytoplasmic level. In washed cells of cadmium-resistant S. aureus 17810R oxidizing glutamate, Cd2+ accumulation was prevented due to activity of the plasmid-coded Cd2+ efflux system. Consequently, H +-producing and -requiring processes were not affected by Cd2+.  相似文献   

15.
Summary The regulatory mechanism of ATP regeneration by the glycolytic pathway in Hansenula jadinii cells was investigated by analyzing the initial stage of CDP-choline fermentation. As a result, the on-off of ATP regeneration was found to be determined by the ATP concentration overcoming the inhibitory effect of phosphate buffer on hexokinase activity. The concentration of ATP at the initial stage of fermentation was greatly influenced by the kinds and amounts of glycogen in cells. Based on these results, the regulatory mechanism of ATP regeneration by the glycolytic pathway is discussed in detail.  相似文献   

16.
A mixed membrane fraction isolated from C. albicans yeast cells catalyzed the transfer of glucose from UDP-Glc into three classes of endogenous acceptors: glucolipid, glycoprotein and lipid-linked oligosaccharides. About 80 of the total radioactivity transferred into these products corresponded to the glucolipid which was identified as dolichol phosphate glucose by several criteria. The remainder was detected in about equal proportions in the other two fractions. Conditions that stimulated or inhibited glucolipid synthesis did not affect the extent of glycoprotein labeling. The synthesis of dolichol phosphate glucose exhibited a Kmof 104 M UDP-Glc and was stimulated by Mg2+but not by Mn2+or Ca2+. The latter cations were, however, better stimulators of glycoprotein labeling than Mg2+. Most nucleotides strongly inhibited the synthesis of dolichol phosphate glucose, UMP being a competitive inhibitor with a Kiof 100 M. The dolichol phosphate glucose synthase reaction was reversed about 57 by 0.62 mM UDP but not by UMP.  相似文献   

17.
Summary In a lactic acid fermentation by Streptococcus faecalis, the specific consumption rate of glucose (v) and the specific production rate of lactic acid () were represented by the following simple equations as functions of the specific growth rate (): 1/=(1/) + 1/ = (1/) + By use of data from a batch culture, these two equations were derived from enzyme kinetics of the product inhibition. These equations were successfully applied to the results of batch culture and chemostat culture. In addition, calculation of ATP yield by these equations agreed with the experimental results better than the conventional Leudeking-Piret type equation, which includes two terms associated with growth and not with growth. Correspondence to: H. Ohara  相似文献   

18.
Cultured human and rat endothelial cells were used to study cellular toxicity and Ca2+ signalling upon exposure to reactive oxygen species. Superoxide and hydrogen peroxide (O2·–/H2O2) were produced by the hypoxanthine/xanthine oxidase system (HX/XO) and caused intracellular Ca2+ concentration ([Ca2+]i) to rise steadily when activities above 2 mU/ml were used. These Ca2+ increases were also measured when the glucose/glucose oxidase (G/GO) system above 5 mU/ml was used to produce hydrogen peroxide (H2O2). Gross morphological changes appeared to parallel elevated [Ca2+]i levels preceding cell death. However, when HX/XO or G/GO were used at non toxic doses rapid and transient changes in [Ca2+]i were measured. These treatments did not alter subsequent receptor mediated Ca2+ signalling induced by ATP (10 M) or histamine (100 M). Superoxide dismutase (50 U/ml), which dismutates O2·minus; into H2O2 al ient [Ca2+]i responses. H2O2 added directly was able to induce similar Ca2+ transients when concentrations of at least 500 M were used. Buffering trace amounts of iron (o-phenanthroline; 200 M) in order to inhibit úOH radical formation was not effective to alter Ca2+ changes. Experiments performed in Ca2+-free buffer showed a similar rise in [Ca2+]i and readdition of Ca2+ to the extracellular medium indicated the activation of store operated Ca2+ entry. Blocking Ca2+-ATPases of the endoplasmatic reticulum with thapsigargin (1 M) inhibited ROS induced transient increases and cells preincubated with pertussis toxin (200 nM) showed unchanged Ca2+ transients after exposure to both enzyme systems. Phospholipase C inhibitor U73122 (2 M) effectively reduced hydrogen peroxide induced emptying of intracellular stores. Taken together, we demonstrate that enzymatically produced non-toxic H2O2 rather than O· ndash; or · OH causes calcium signalling from thapsigargin sensitive stores, and activates store operated Ca2+ entry at least partially by activating phospholipase C. These changes clearly differ from pathological oxidative stress associated with a progressive increase in [Ca2+]i.  相似文献   

19.
Summary As 15% of band 3 protein, the assumed chloride channel, is associated with spectrin, the major peripheral protein of a lattice located at the red cell membrane-cytosol interface, the present study was undertaken to evaluate whether a rearrangement of the lattice modifies the functional property of band 3 protein. Such a rearrangement was modulated by depletion of cell ATP and/or by accumulation of Ca2+ ions within the cell.ATP depletion induces an inhibition of the electroneutral one-for-one chloride exchanges. Neither the modification of red cell morphology due to ATP depletion (discocyte-echinocyte transformation) nor a direct effect of the decrease in internal ATP level can account for this inhibition. On the other hand, it seems reasonable to consider that inhibition is related to the changes in membrane protein organization (formation of heteropolymers) induced by the decrease in ATP level. But it does not appear that the degree of inhibition is modified when this altered assembly of membrane protein is stabilized by disulfide linkages.Accumulation of Ca2+ ions in the cell at a relatively low concentration (10m range) inhibits chloride exchange without apparent modification of the assembly of membrane proteins. This effect of calcium on chloride exchanges is speculatively denoted as a direct effect of calcium.Calcium loading of fresh red cells at higher concentrations (500 to 1000 m) obtained by use of the ionophore A23187 induces a very strong inhibition of chloride exchanges. In this case, inhibition can be reasonably accounted for by two simultaneous effects of calcium: a direct effect which explains half of the inhibition and an indirect effect due to the formation of membrane protein complexes stabilized by covalent crosslinkages (activation by Ca2+ ions of a transglutaminase).It is interesting to note that intracellular calcium, whatever the level, inhibits electroneutral exchanges of chloride but increases net chloride movements.  相似文献   

20.
Summary Forty-eight yeast strains belonging to the genera Candida, Debaryomyces, Kluyveromyces and Pichia (obtained from the ARS Culture Collection, Peoria, IL) were screened for production of extracellular glucose tolerant and thermophilic -glucosidase activity using p-nitrophenyl--D-glucoside as substrate. Enzymes from 15 yeast strains showed very high glucose tolerance (<50 % inhibition at 30 %, w/v glucose). The optimal temperatures and pH for these -glucosidase activities varied from 30 to 65°C and pH 4.5 to 6.5. The -glucosidases from all these yeast strains hydrolyzed cellobiose.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号