首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain-derived neurotrophic factor (BDNF) is a neuroprotective polypeptide that is thought to be responsible for neuron proliferation, differentiation, and survival. An agent that enhances production of BDNF is expected to be useful for the treatment of neurodegenerative diseases. Here we report that galectin-1, a member of the family of beta-galactoside binding proteins, induces astrocyte differentiation and strongly inhibits astrocyte proliferation, and then the differentiated astrocytes greatly enhance their production of BDNF. Induction of astrocyte differentiation and BDNF production by an endogenous mammalian lectin may be a new mechanism for preventing neuronal loss after injury.  相似文献   

2.
Brain-derived neurotrophic factor (BDNF) is critical for the function and survival of neurons that degenerate in the late stage of Alzheimer's disease (AD). There are two forms of BDNF, the BDNF precursor (proBDNF) and mature BDNF, in human brain. Previous studies have shown that BDNF mRNA and protein, including proBDNF, are dramatically decreased in end-stage AD brain. To determine whether this BDNF decrease is an early or late event during the progression of cognitive decline, we used western blotting to measure the relative amounts of BDNF proteins in the parietal cortex of subjects clinically classified with no cognitive impairment (NCI), mild cognitive impairment (MCI) or mild to moderate AD. We found that the amount of proBDNF decreased 21 and 30% in MCI and AD groups, respectively, as compared with NCI, consistent with our previous results of a 40% decrease in end-stage AD. Mature BDNF was reduced 34 and 62% in MCI and AD groups, respectively. Thus, the decrease in mature BDNF and proBDNF precedes the decline in choline acetyltransferase activity which occurs later in AD. Both proBDNF and mature BDNF levels were positively correlated with cognitive measures such as the Global Cognitive Score and the Mini Mental State Examination score. These results demonstrate that the reduction of both forms of BDNF occurs early in the course of AD and correlates with loss of cognitive function, suggesting that proBDNF and BDNF play a role in synaptic loss and cellular dysfunction underlying cognitive impairment in AD.  相似文献   

3.
4.
Bone morphogenetic proteins are members of the transforming growth factor-beta superfamily that have multiple functions in the developing nervous system. One of them, bone morphogenetic protein-2 (BMP-2), promotes the differentiation of cultured striatal neurones, enhancing dendrite growth and calbindin-positive phenotype. Bone morphogenetic proteins have been implicated in cooperative interactions with other neurotrophic factors. Here we examined whether the effects of BMP-2 on cultured striatal neurones are mediated or enhanced by other neurotrophic factors. BMP-2 had a cooperative effect with low doses of brain-derived neurotrophic factor or neurotrophin-3 (but not with other neurotrophic factors such as glial cell line-derived neurotrophic factor, neurturin or transforming growth factor-beta 2) on the number of calbindin-positive striatal neurones. Moreover, BMP-2 induced phosphorylated Trk immunoreactivity in cultured striatal neurones, suggesting that neurotrophins are involved in BMP-2 neurotrophic effects. The addition of TrkB-IgG or antibodies against brain-derived neurotrophic factor abolished the effects of BMP-2 on the number and degree of differentiation of calbindin-positive striatal neurones. Indeed, BMP-2 treatment increased brain-derived neurotrophic factor protein levels in treated cultures media and BDNF immunocytochemistry revealed that this neurotrophin was produced by neuronal cells. Taken together, these results indicate that brain-derived neurotrophic factor mediates the effects of BMP-2 on striatal neurones.  相似文献   

5.
Brain-derived neurotrophic factor (BDNF) mediates survival and neuroplasticity through the activation of phosphoinositide 3-kinase-Akt pathway. Although previous studies suggested the roles of mitogen-activated protein kinase, phospholipase C-gamma-mediated intracellular calcium ([Ca2+]i) increase, and extracellular calcium influx in regulating Akt activation, the cellular mechanisms are largely unknown. We demonstrated that sub-nanomolar BDNF significantly induced Akt activation in developing cortical neurons. The TrkB-dependent Akt phosphorylation at S473 and T308 required only phosphoinositide 3-kinase, but not phospholipase C and mitogen-activated protein kinase activity. Blocking NMDA receptors, L-type voltage-gated calcium channels, and chelating extracellular calcium by EGTA failed to block BDNF-induced Akt phosphorylation. In contrast, chelating [Ca2+]i by 1,2-bis(o-aminophenoxy)ethane-N,N,N ',N '-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) abolished Akt phosphorylation. Interestingly, sub-nanomolar BDNF did not stimulate [Ca2+]i increase under our culture conditions. Together with that NMDA- and membrane depolarization-induced [Ca2+]i increase did not activate Akt, we conclude that the basal level of [Ca2+]i gates BDNF function. Furthermore, inhibiting calmodulin by W13 suppressed Akt phosphorylation. On the other hand, inhibition of protein phosphatase 1 by okadaic acid and tautomycin rescued Akt phosphorylation in BAPTA-AM and W13-treated neurons. We further demonstrated that the phosphorylation of phosphoinositide-dependent kinase-1 did not correlate with Akt phosphorylation at T308. Our results suggested novel roles of basal [Ca2+]i, rather than activity-induced calcium elevation, in BDNF-Akt signaling.  相似文献   

6.
We examined the effects of lysophosphatidic acid (LPA) on microglia, which may play an important role in the development and maintenance of neuropathic pain. LPA caused membrane ruffling as detected by scanning electron microscopy, and increased the expression of brain-derived neurotrophic factor (BDNF) in a primary culture of rat microglia, which express LPA(3), but not LPA(1) or LPA(2) receptors. These actions were inhibited by a Galpha(q/11)-antisense oligodeoxynucleotide (AS-ODN), U73122, an inhibitor of phospholipase C (PLC), and apyrase, which specifically degrades ATP and ADP. When ATP release was measured using a luciferin-luciferase bioluminescence assay, LPA was shown to increase it in an LPA(3) and PLC inhibitor-reversible manner. However, LPA-induced ATP release was also blocked by the Galpha(q/11) AS-ODN, but not by pertussis toxin. These results suggest that LPA induces the release of ATP from rat primary cultured microglia via the LPA(3) receptor, Galpha(q/11) and PLC, and that the released ATP or ectopically converted ADP may in turn cause membrane ruffling via P2Y(12) receptors and Galpha(i/o) activation, and BDNF expression via activation of P2X(4) receptors.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF) is a well-known neuroprotectant and a potent therapeutic candidate for neurodegenerative diseases. However, there are several clinical concerns about its therapeutic applications. In the current study, we designed and developed BDNF-mimicking small peptides as an alternative to circumvent these problems. A phage-displayed peptide library was screened using BDNF receptor (neurotrophic tyrosine kinase receptor type2 [NTRK2]) and evaluated by ELISA. The peptide sequences showed similarity to loop2 of BDNF, they were recognized as discontinuous epitopes though. Interestingly, in silico molecular docking showed strong interactions between the peptide three-dimensional models and the surface residues of the NTRK2 protein at the IgC2 domain. A consensus peptide sequence was then synthesized to generate a mimetic construct (named as RNYK). The affinity binding and function of this construct was confirmed by testing against the native structure of NTRK2 in SH-SY5Y cells in vitro using flow-cytometry and MTT assays, respectively. RNYK at 5 ng/mL prevented neuronal degeneration of all- trans-retinoic acid-treated SH-SY5Y with equal efficacy to or even better than BDNF at 50 ng/mL.  相似文献   

8.
Expression of brain-derived neurotrophic factor (BDNF) is sensitive to changes in oxygen availability, suggesting that BDNF may be involved in adaptive responses to oxidative stress. However, it is unknown whether or not oxidative stress actually increases availability of BDNF by stimulating BDNF secretion. To approach this issue we examined BDNF release from PC12 cells, a well-established model of neurosecretion, in response to hypoxic stimuli. BDNF secretion from neuronally differentiated PC12 cells was strongly stimulated by exposure to intermittent hypoxia (IH). This response was inhibited by N-acetyl-l-cysteine, a potent scavenger of reactive oxygen species (ROS) and mimicked by exogenous ROS. IH-induced BDNF release requires activation of tetrodotoxin sensitive Na+ channels and Ca2+ influx through N- and L-type channels, as well as mobilization of internal Ca2+ stores. These results demonstrate that oxidative stress can stimulate BDNF release and that underlying mechanisms are similar to those previously described for activity-dependent BDNF secretion from neurons. Surprisingly, we also found that IH-induced secretion of BDNF was blocked by dopamine D2 receptor antagonists or by inhibition of dopamine synthesis with alpha-methyl-p-tyrosine. These data indicate that oxidative stress can stimulate BDNF release through an autocrine or paracrine loop that requires dopamine receptor activation.  相似文献   

9.
Serotonergic neurones are among the first to develop in the central nervous system. Their survival and maturation is promoted by a variety of factors, including serotonin itself, brain-derived neurotrophic factor (BDNF) and S100beta, an astrocyte-specific Ca(2+) binding protein. Here, we used BDNF-deficient mice and cell cultures of embryonic raphe neurones to determine whether or not BDNF effects on developing serotonergic raphe neurones are influenced by its action on glial cells. In BDNF-/- mice, the number of serotonin-immunoreactive neuronal somata, the amount of the serotonin transporter, the serotonin content in the striatum and the hippocampus, and the content of 5-hydroxyindoleacetic acid in all brain regions analysed were increased. By contrast, reduced immunoreactivity was found for myelin basic protein (MBP) in all brain areas including the raphe and its target region, the hippocampus. Exogenously applied BDNF increased the number of MBP-immunopositive cells in the respective culture systems. The raphe area displayed selectively reduced immunoreactivity for S100beta. Accordingly, S100beta was increased in primary cultures of pure astrocytes by exogenous BDNF. In glia-free neuronal cultures prepared from the embryonic mouse raphe, addition of BDNF supported the survival of serotonergic neurones and increased the number of axon collaterals and primary dendrites. The latter effect was inhibited by the simultaneous addition of S100beta. These results suggest that the presence of BDNF is not a requirement for the survival and maturation of serotonergic neurones in vivo. BDNF is, however, required for the local expression of S100beta and production of MBP. Therefore BDNF might indirectly influence the development of the serotonergic system by stimulating the expression of S100beta in astrocytes and the production MBP in oligodendrocytes.  相似文献   

10.
In humans, several pathologies are associated with disturbances of the respiratory control, some of them including alteration in the brain-derived neurotrophic factor (BDNF) signalling pathway. BDNF has long been known as a neurotrophic factor involved in survival, differentiation and maintenance of neuronal populations in the peripheral and central nervous system. More recently BDNF has also been discovered to be a potent neuromodulator with acute effects on neuronal excitability and synaptic plasticity. Animals deleted for the gene encoding BDNF exhibit respiratory alteration suggesting an important but yet undefined role of the neurotrophin in respiratory rhythmogenesis either by a trophic and/or an acute action. The possibility that BDNF might exert an acute regulatory role on the rhythmic activity of the respiratory generator of the pre-B?tzinger complex has been recently examined in newborn mice in vitro. Results obtained, reviewed in the present paper, will help getting insights in respiratory rhythm regulatory mechanisms that involve BDNF signalling.  相似文献   

11.
During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.  相似文献   

12.
This study was undertaken to elucidate the molecular mechanisms by which lithium regulates the development of spinal cord-derived neural progenitor cells (NPCs) in vitro and after transplanted in vivo . Our results show that lithium at the therapeutic concentration significantly increases the proliferation and neuronal differentiation of NPCs in vitro. Specific ELISAs, western blotting, and quantitative real-time RT-PCR assays demonstrate that lithium treatment significantly elevates the expression and production of brain-derived neurotrophic factor (BDNF) by NPCs in culture. Application of a BDNF neutralizing antibody in culture leads to a marked reduction in the neurogenesis of lithium-treated NPCs to the control level. However, it shows no effects on the proliferation of lithium-treated NPCs. These findings suggest that the BDNF pathway is possibly involved in the supportive role of lithium in inducing NPC neurogenesis but not proliferation. This study also provides evidence that lithium is able to elevate the neuronal generation and BDNF production of NPCs after transplantation into the adult rat ventral horn with motoneuron degeneration because of spinal root avulsion, which highlights the therapeutic potential of lithium in cell replacement strategies for spinal cord injury because of its ability to promote neuronal differentiation and BDNF production of grafted NPCs in the injured spinal cord.  相似文献   

13.
Neurons in the central nervous system (CNS) have limited capacity for axonal regeneration after trauma and neurological disorders due to an endogenous nonpermissive environment for axon regrowth in the CNS. Lateral olfactory tract usher substance (LOTUS) contributes to axonal tract formation in the developing brain and axonal regeneration in the adult brain as an endogenous Nogo receptor-1 (NgR1) antagonist. However, how LOTUS expression is regulated remains unclarified. This study examined molecular mechanism of regulation in LOTUS expression and found that brain-derived neurotrophic factor (BDNF) increased LOTUS expression in cultured hippocampal neurons. Exogenous application of BDNF increased LOTUS expression at both mRNA and protein levels in a dose-dependent manner. We also found that pharmacological inhibition with K252a and gene knockdown by siRNA of tropomyosin-related kinase B (TrkB), BDNF receptor suppressed BDNF-induced increase in LOTUS expression. Further pharmacological analysis of the TrkB signaling pathway revealed that BDNF increased LOTUS expression through mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) cascades, but not phospholipase C-γ (PLCγ) cascade. Additionally, treatment with c-AMP response element binding protein (CREB) inhibitor partially suppressed BDNF-induced LOTUS expression. Finally, neurite outgrowth assay in cultured hippocampal neurons revealed that BDNF treatment-induced antagonism for NgR1 by up-regulating LOTUS expression. These findings suggest that BDNF may acts as a positive regulator of LOTUS expression through the TrkB signaling, thereby inducing an antagonistic action for NgR1 function by up-regulating LOTUS expression. Also, BDNF may synergistically affect axon regrowth through the upregulation of LOTUS expression.

  相似文献   


14.
Brain-derived neurotrophic factor (BDNF) regulates several properties of striatal dopaminoceptive medium-sized spiny neurons (MSNs) in vivo and in vitro, including expression levels of DARPP-32 (dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein, 32 kDa). DARPP-32 is expressed in 96% of the MSNs, and is a key modulator of dopamine actions. We investigated the intracellular signal transduction pathways activated by BDNF in MSNs and via which BDNF induces DARPP-32 expression. We found that phosphorylation of the cyclic AMP response element binding protein (CREB) is only transiently increased following stimulation of MSNs by BDNF, whereas increased phosphorylation of the extracellular signal regulated kinases 1 and 2 (Erk1/2) and Akt is sustained for longer than 4 h. Treatment of cultures with inhibitors of mitogen-activated protein kinase kinase (MEK) or phosphatidylinositide 3-kinase (PI3K) showed that the majority of the BDNF-induced increase in DARPP-32 requires the PI3K pathway. We also found that inhibition of PI3K reduces BDNF-induced Erk phosphorylation, indicating that cross-talk between these pathways may play a prominent role in MSNs.  相似文献   

15.
A high level of hippocampal brain-derived neurotrophic factor (BDNF) in normally aged as compared with young rats suggests that it is important to maintain a considerable level of hippocampal BDNF during aging in order to keep normal hippocampal functions. To elucidate possible mechanisms of endogenous BDNF increase, changes in levels of BDNF were studied in the rat brain following systemic administration of various convulsant agents; excitotoxic glutamate agonists, NMDA, kainic acid and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA); GABA receptor antagonists, picrotoxin, pentylenetetrazole (PTZ) and lindane (gamma-hexachlorocyclohexane); and L-type voltage-dependent calcium channel agonist, BAY-K 8644. Kainic acid and AMPA, but not NMDA, caused remarkable increases in BDNF protein in the rat hippocampus and entorhinal cortex. Picrotoxin, PTZ and lindane stimulated BDNF production in the entorhinal cortex and also in the hippocampus of rats showing very severe convulsions. On the other hand, BAY-K 8644 treatment increased BDNF levels in the neocortex and entorhinal cortex. Maximal levels of BDNF protein were observed at 12--24 h, 8--16 h and 6 h following administration of kainic acid, PTZ and BAY-K 8644, respectively. Kainic acid stimulated BDNF synthesis in presynaptic hippocampal granule neurons, but not in postsynaptic neurons with its receptors, while PTZ and BAY-K 8644 produced the same effects in postsynaptic neurons in the entorhinal cortex (in granule neurons in the hippocampus) and in the whole cortex, respectively. Nifedipine inhibited almost completely BAY-K 8644, but not PTZ, effects. omega-Conotoxin GVIA and DCG-IV partially blocked kainic acid-induced enhancement of BDNF, indicating involvement of L-type and N-type voltage-dependent calcium channels, respectively. In addition, BDNF levels in the hippocampus of mice deficient in D-myo-inositol-1,4,5-triphosphate receptor gene were scarcely different from those in the same region of controls, suggesting little involvement of intracellular calcium increase through this receptor. BAY-K 8644, but not kainic acid or PTZ, stimulated the phosphorylation of cyclic AMP responsive element binding protein. Our results indicate convulsant-dependent stimulation of BDNF production and involvement of region-specific voltage-dependent calcium channels.  相似文献   

16.
According to recent data, the brain-derived neurotrophic factor (BDNF) is involved in schizophrenia. An association of the Val66Met polymorphism of the BDNF gene has been reported, but the results of different studies are discrepant. The allele and genotype frequency distributions of BDNF were studied in 783 schizophrenics and 633 mentally healthy controls. Significant between-group differences were not detected. When the patients were stratified by sex and schizophrenia form, men with continuous (chronic) schizophrenia were found to have a significantly higher frequency of the Val/Val genotype as compared to men with the episodic form (P = 0.047). Clinical symptoms assessed by the PANSS in men with the Val/Val genotype were more severe than in men with the Met/Met genotype (P = 0.044). No difference in BDNF genotype frequency distribution was observed between female groups differing in disease form or the severity of clinical symptoms. It was concluded that the association of the Val66Met polymorphism with schizophrenia is affected by the sex of patients and clinical heterogeneity of the disease and that the Val/Val genotype is associated with more severe schizophrenia in males.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号