首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously seen that protein kinase C (PKC) epsilon induces neurite outgrowth and that PKCdelta and PKCtheta elicit apoptosis in neuroblastoma cells. In this study we investigate the effects of cell-permeable C(2)-ceramide on these events in SK-N-BE(2) neuroblastoma cells. C(2)-ceramide abolishes neurite formation induced by overexpression of PKCepsilon and, in cells overexpressing PKCdelta or PKCtheta, ceramide treatment leads to apoptosis. Exposure to C(2)-ceramide also suppressed neurite outgrowth induced by retinoic acid, but ceramide did not abrogate neurite induction by treatment with the ROCK inhibitor Y-27632, demonstrating that C(2)-ceramide is not a general inhibitor of neurite outgrowth. The neurite-suppressing effect occurs independently of cell-death. Furthermore, C(2)-ceramide relocated PKCepsilon and the isolated regulatory domain of PKCepsilon from the cytosol to the perinuclear region. In contrast, neither the localization of PKCdelta nor of PKCtheta was affected by C(2)-ceramide. Taken together, the data indicate that the neurite-inhibiting effect of C(2)-ceramide treatment may be caused by a re-localization of PKCepsilon and thus identify a functional consequence of ceramide effects on PKCepsilon localization.  相似文献   

2.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.  相似文献   

3.
We investigated the potential roles of specific isoforms of protein kinase C (PKC) in the regulation of leukotriene D(4)-induced Ca(2+) signaling in the intestinal epithelial cell line Int 407. RT-PCR and Western blot analysis revealed that these cells express the PKC isoforms alpha, betaII, delta, epsilon, zeta, and mu, but not betaI, gamma, eta, or theta;. The inflammatory mediator leukotriene D(4) (LTD(4)) caused the TPA-sensitive PKC isoforms alpha, delta, and epsilon, but not betaII, to rapidly translocate to a membrane-enriched fraction. The PKC inhibitor GF109203X at 30 microM but not 2 microM significantly impaired the LTD(4)-induced Ca(2+) signal, indicating that the response involves a novel PKC isoform, such as delta or epsilon, but not alpha. LTD(4)-induced Ca(2+) signaling was significantly suppressed in cells pretreated with TPA for 15 min and was abolished when the pretreatment was prolonged to 2 h. Immunoblot analysis revealed that the reduction in the LTD(4)-induced calcium signal coincided with a reduction in the cellular content of PKCepsilon and, to a limited extent, PKCdelta. LTD(4)-induced Ca(2+) signaling was also markedly suppressed by microinjection of antibodies against PKCepsilon but not PKCdelta. These data suggest that PKCepsilon plays a unique role in regulation of the LTD(4)-dependent Ca(2+) signal in intestinal epithelial cells.  相似文献   

4.
Hyperammonemia is responsible for most neurological alterations in patients with hepatic encephalopathy by mechanisms that remain unclear. Hyperammonemia alters phosphorylation of neuronal protein kinase C (PKC) substrates and impairs NMDA receptor-associated signal transduction. The aim of this work was to analyse the effects of hyperammonemia on the amount and intracellular distribution of PKC isoforms and on translocation of each isoform induced by NMDA receptor activation in cerebellar neurons. Chronic hyperammonemia alters differentially the intracellular distribution of PKC isoforms. The amount of all isoforms (except PKC zeta) was reduced (17-50%) in the particulate fraction. The contents of alpha, beta1, and epsilon isoforms decreased similarly in cytosol (65-78%) and membranes (66-83%), whereas gamma, delta, and theta; isoforms increased in cytosol but decreased in membranes, and zeta isoform increased in membranes and decreased in cytosol. Chronic hyperammonemia also affects differentially NMDA-induced translocation of PKC isoforms. NMDA-induced translocation of PKC alpha and beta is prevented by ammonia, whereas PKC gamma, delta, epsilon, or theta; translocation is not affected. Inhibition of phospholipase C did not affect PKC alpha translocation but reduced significantly PKC gamma translocation, indicating that NMDA-induced translocation of PKC alpha is mediated by Ca2+, whereas PKC gamma translocation is mediated by diacylglycerol. Chronic hyperammonemia reduces Ca+2-mediated but not diacylglycerol-mediated translocation of PKC isoforms induced by NMDA.  相似文献   

5.
Previous studies have suggested that protein kinase C (PKC) isoforms differentially influence the sensitivity of gamma-aminobutyric acid(A) (GABA(A) ) receptor responses in brain. Both PKCgamma and PKCepsilon knock-out mice exhibit altered ethanol potentiation of GABA(A) receptor mediated Cl(-) flux. Furthermore, chronic ethanol consumption alters GABA(A) receptor function and receptor subunit peptide expression by mechanisms that are not yet understood. The present study explored the possibility that PKC isoforms are directly associated with GABA(A) receptors, and this association is influenced by chronic ethanol exposure. GABA(A) receptors containing alpha1 or alpha4 subunits were immunoprecipitated from solubilized protein derived from the membrane fraction of rat cerebral cortex using selective antibodies. Immunoprecipitated receptors were screened by western blot analysis for the presence of PKCdelta, gamma and epsilon isoforms. We found pronounced labeling of PKCgamma but not PKCdelta or PKCepsilon in the alpha1 and alpha4 subunit immunoprecipitates. Immunoprecipitation with PKCgamma, but not with IgG antibody also yielded GABA(A) receptor alpha1 and alpha4 subunits in the immunoprecipitate. The association of PKCgamma with alpha1-containing receptors was decreased 44 +/- 11% after chronic ethanol consumption. In contrast, PKCgamma associated with alpha4-containing receptors was increased 32 +/- 7% after chronic ethanol consumption. These results suggest that PKCgamma may be involved in GABA(A) receptor adaptations following chronic ethanol consumption.  相似文献   

6.
The roles of protein kinase C (PKC) isoforms in cholinergic potentiation of glucose-induced insulin secretion were investigated in rat pancreatic islets. Western-blot analysis showed the presence of PKC-alpha, betaII, delta, epsilon, eta, and zeta, but not PKC-betaI, gamma, or iota, in the islets. Carbachol (CCh) caused translocations of PKC-alpha, betaII, delta, and epsilon from the cytosol to the plasma membrane. CCh facilitated 7-mM glucose-induced insulin secretion from isolated rat islets. The CCh-stimulated insulin secretion was significantly suppressed by the generic PKC inhibitor chelerythrine. In contrast, Go 6976, an inhibitor of conventional PKC isoforms, had no effect on the insulin secretion stimulated by CCh, although it significantly inhibited that induced by phorbol 12-myristate 13-acetate. These results suggest that the novel PKC isoforms activated by CCh, i.e., PKC-delta and/or epsilon, participate in the stimulatory effect of CCh on insulin secretion.  相似文献   

7.
Ca2+/calmodulin-dependent protein kinase (CaMK)II is highly expressed in the CNS and mediates activity-dependent neuronal plasticity. Four CaMKII isoforms, alpha, beta, gamma and delta, have a large number of splicing variants. Here we identified isoforms of CaMKII in the rat substantia nigra (SN). Northern blot and RT-PCR analyses revealed that the gamma and delta isoform mRNAs with several splicing variants were predominantly expressed in SN. Immunoblot analysis indicated that the major isoforms were gammaA, gammaC, delta1 and delta3. An immunohistochemical study also confirmed the preferential localization of gamma and delta isoforms in SN dopaminergic neurons. In dopaminergic neurons, immunoreactivity against anti-CaMKIIdelta1-4 antibody was detected in both nucleus and cytoplasm, in contrast to the predominant expression of gamma isoforms in the cytoplasm. Furthermore, we showed expression of brain-derived neurotrophic factor (BDNF) mRNAs with exons II and IV in SN. Taken together with our previous observations, the results suggest that the CaMKIIdelta3 isoform is involved in the expression of BDNF in the SN.  相似文献   

8.
9.
Byers  D.M.  Rosé  S.D.  Cook  H.W.  Hao  C.  Fedoroff  S. 《Neurochemical research》1998,23(12):1493-1499
Many events involved in activation of microglia and leukocytes by lipopolysaccharide (LPS) are mediated by protein kinase C (PKC), and we have recently demonstrated that a major PKC substrate, MARCKS-related protein (MRP), is selectively induced by LPS in murine microglia. In microglia from LPS-nonresponsive (C3H/HeJ) mice, induction of MRP and secretion of CSF-1 required much higher LPS concentrations (100 ng/ml) than in normal (C3H/OuJ) microglia (10 ng/ml). By contrast, TNF production was not significantly increased in C3H/HeJ microglia even at 1 g LPS/ml. Microglia expressed PKC isoforms , , , and (but not and ); PKC isoform levels were similar in both normal and C3H/HeJ microglia and no significant change in response to LPS was noted. Our results indicate that LPS alters PKC substrate (rather than kinase) expression, and that the Lpsd mutation in C3H/HeJ mice differentially affects regulation of several gene products implicated in microglial function.  相似文献   

10.
Deposition of plaques containing Abeta is considered important in the pathogenesis of Alzheimer's disease. Phorbol esters that activate protein kinase C (PKC) promote alpha-secretase-mediated processing of the beta amyloid precursor protein (APP), which generally reduces formation of Abeta. To determine which PKC isozymes mediate this process, we studied CHO cells that express human APP751. Phorbol 12-myristate, 13-acetate (PMA)-stimulated APP secretion, which was reduced by a general PKC inhibitor bisindoylmaleimide I, but not by G? 6976, which inhibits PKCalpha, beta, gamma, and mu. Since PKCdelta and epsilon were the only other PMA-sensitive isozymes present, we studied cells that express selective peptide inhibitors of these isozymes. Expression of the PKCepsilon inhibitor inhibited PMA-induced APPs secretion and suppression of Abeta production. In contrast, the PKCdelta inhibitor had no effect. These results provide evidence that PKCepsilon decreases Abeta production by promoting alpha-secretase mediated cleavage of APP.  相似文献   

11.
Several platelet agonists, including thrombin, collagen, and thromboxane A(2), cause dense granule release independently of thromboxane generation. Because protein kinase C (PKC) isoforms are implicated in platelet secretion, we investigated the role of individual PKC isoforms in platelet dense granule release. PKCdelta was phosphorylated in a time-dependent manner that coincided with dense granule release in response to protease-activated receptor-activating peptides SFLLRN and AYPGKF in human platelets. Only agonists that caused platelet dense granule secretion activated PKCdelta. SFLLRN- or AYPGKF-induced dense granule release and PKCdelta phosphorylation occurred at the same respective agonist concentration. Furthermore, AYPGKF and SFLLRN-induced dense granule release was blocked by rottlerin, a PKCdelta selective inhibitor. In contrast, convulxin-induced dense granule secretion was potentiated by rottlerin but was abolished by Go6976, a classical PKC isoform inhibitor. However, SFLLRN-induced dense granule release was unaffected in the presence of Go6976. Finally, rottlerin did not affect SFLLRN-induced platelet aggregation, even in the presence of dimethyl-BAPTA, indicating that PKCdelta has no role in platelet fibrinogen receptor activation. We conclude that PKCdelta and the classical PKC isoforms play a differential role in platelet dense granule release mediated by protease-activated receptors and glycoprotein VI. Furthermore, PKCdelta plays a positive role in protease-activated receptor-mediated dense granule secretion, whereas it functions as a negative regulator downstream of glycoprotein VI signaling.  相似文献   

12.
We have shown that protein kinase C (PKC) epsilon, independently of its kinase activity, via its regulatory domain (RD), induces neurites in neuroblastoma cells. This study was designed to evaluate whether the same effect is obtained in nonmalignant neural cells and to dissect mechanisms mediating the effect. Overexpression of PKCepsilon resulted in neurite induction in two immortalised neural cell lines (HiB5 and RN33B). Phorbol ester potentiated neurite outgrowth from PKCepsilon-overexpressing cells and led to neurite induction in cells overexpressing PKCdelta. The effects were potentiated by blocking the PKC catalytic activity with GF109203X. Furthermore, kinase-inactive PKCdelta induced more neurites than the wild-type isoform. The isolated regulatory domains of novel PKC isoforms also induced neurites. Experiments with PKCdelta-overexpressing HiB5 cells demonstrated that phorbol ester, even in the presence of a PKC inhibitor, led to a decrease in stress fibres, indicating an inactivation of RhoA. Active RhoA blocked PKC-induced neurite outgrowth, and inhibition of the RhoA effector ROCK led to neurite outgrowth. This demonstrates that neurite induction by the regulatory domain of PKCdelta can be counteracted by PKCdelta kinase activity, that PKC-induced neurite outgrowth is accompanied by stress fibre dismantling indicating an inactivation of RhoA, and that the RhoA pathway suppresses PKC-mediated neurite outgrowth.  相似文献   

13.
Human involucrin (hINV) mRNA level and promoter activity increase when keratinocytes are treated with the differentiating agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). This response is mediated via a p38 mitogen-activated protein kinase-dependent pathway that targets activator protein 1 (Efimova, T., LaCelle, P. T. , Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395). In the present study we examine the role of various PKC isoforms in this regulation. Transfection of expression plasmids encoding the novel PKC isoforms delta, epsilon, and eta increase hINV promoter activity. In contrast, neither conventional PKC isoforms (alpha, beta, and gamma) nor the atypical isoform (zeta) regulate promoter activity. Consistent with these observations, promoter activity is inhibited by the PKCdelta-selective inhibitor, rottlerin, but not by Go-6976, an inhibitor of conventional PKC isoforms, and novel PKC isoform-dependent promoter activation is inhibited by dominant-negative PKCdelta. This regulation appears to be physiologically important, as transfection of keratinocytes with PKCdelta, -epsilon, or -eta increases expression of the endogenous hINV gene. Synergistic promoter activation (>/=100-fold) is observed when PKCepsilon- or -eta-transfected cells are treated with TPA. In contrast, the PKCdelta-dependent response is more complex as either activation or inhibition is observed, depending upon PKCdelta concentration.  相似文献   

14.
15.
16.
Presenilins (PSs) are involved in processing several proteins such as the amyloid precursor protein (APP), as well as in pathways for cell death and survival. We previously showed that some familial Alzheimer's disease PS mutations cause increased basal and acetylcholine muscarinic receptor-stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha and PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout MEFs. Also, PKCdelta levels were lowered after transfection of PS1 into PS1 knockout or PS double knockout MEFs. Using APP knockout MEFs we showed that the expression of PKCalpha, but not the other PKC isoforms is partially dependent on APP and can be regulated by APP intracellular domain (AICD). These results show that PLC and PKC activations are modulated by PS and also that PSs differentially regulate the expression of PKC isoforms by both APP/AICD-dependent and independent mechanisms.  相似文献   

17.
The role of protein kinase C (PKC) in contraction of the human myometrium induced by endothelin-1 (ET-1) was investigated at the end of pregnancy. The expression and subcellular distribution of PKC isoforms were examined by Western blot analysis using isoform-specific antibodies. At least three conventional PKC isoforms (cPKC; alpha, beta1, and beta2), two novel PKC isoforms (epsilon and delta), and an atypical PKC isoform (zeta) were detected in pregnant myometrium. Quantitative immunoblotting revealed that all these isoforms were mainly distributed in the particulate fraction. The lack of a calcium chelator to modify the particulate sequestration of cPKC suggests an interaction with an anchoring protein such as receptor-activated C kinase-1, which is evidenced in the particulate fraction of the pregnant myometrium. Of the six isoforms, only PKCbeta1, PKCbeta2, PKCdelta, and PKCzeta were translocated to the particulate fraction, and PKCepsilon to the cytoskeletal fraction, after stimulation with ET-1. Involvement of PKC in the ET-1-induced contractile response is supported by the inhibition caused by the PKC inhibitor calphostin C. However, we demonstrated that the selective cPKC isoform inhibitor, G? 6976, as well as the substantial depletion of PKCbeta1 and PKCepsilon and the partial depletion of PKCalpha and PKCdelta by a long-term treatment with phorbol 12,13-dibutyrate did not prevent ET-1-induced contraction. Accordingly, our results suggest that PKCdelta and PKCzeta activation mediated ET-1-induced contraction, whereas cPKC isoforms were not implicated in the human pregnant myometrium.  相似文献   

18.
19.
Protein kinase C (PKC) plays a prominent role in immune signaling, and the paradigms for isoform selective signaling are beginning to be elucidated. Real-time microscopy was combined with molecular and biochemical approaches to demonstrate a role for PKC- epsilon in Fc gamma receptor (Fc gammaR)-dependent phagocytosis. RAW 264.7 macrophages were transfected with GFP-conjugated PKC isoforms, and GFP movement was followed during phagocytosis of fluorescent IgG-opsonized beads. PKC- epsilon, but not PKC-delta, concentrated around the beads. PKC- epsilon accumulation was transient; apparent as a "flash" on target ingestion. Similarly, endogenous PKC- epsilon was specifically recruited to the nascent phagosomes in a time-dependent manner. Overexpression of PKC- epsilon, but not PKC-alpha, PKC-delta, or PKC-gamma enhanced bead uptake 1.8-fold. Additionally, the rate of phagocytosis in GFP PKC- epsilon expressors was twice that of cells expressing GFP PKC-delta. Expression of the regulatory domain ( epsilon RD) and the first variable region ( epsilon V1) of PKC- epsilon inhibited uptake, whereas the corresponding PKC-delta region had no effect. Actin polymerization was enhanced on expression of GFP PKC- epsilon and epsilon RD, but decreased in cells expressing epsilon V1, suggesting that the epsilon RD and epsilon V1 inhibition of phagocytosis is not due to effects on actin polymerization. These results demonstrate a role for PKC- epsilon in Fc gammaR-mediated phagocytosis that is independent of its effects on actin assembly.  相似文献   

20.
Choi EY  Lee S  Oh HM  Kim YD  Choi EJ  Kim SH  Kim SW  Choi SC  Jun CD 《Life sciences》2007,80(5):436-445
We have shown that the bacterial iron chelator, deferoxamine (DFO), triggers inflammatory signals, including the production of CXC chemokine IL-8, in human intestinal epithelial cells (IECs) by activating ERK1/2 and p38 kinase pathways. In the present study, we show that PKCdelta, one of the novel protein kinase C (PKC) isoforms, involves in signal transduction pathways leading to DFO-induced IL-8 production. Pretreatment of human intestinal epithelial HT-29 cells with rottlerin showed remarkable inhibition of DFO-induced IL-8 production. In contrast, other PKC inhibitors such as G?6976, G?6983, GF109203X, and staurosporine revealed less or no inhibitory effects on DFO-induced IL-8 production, suggesting a potential role of PKCdelta. Accordingly, DFO caused phosphorylation of PKCdelta in the Thr505 and Ser643 residues in HT-29 cells. Transfection of dominant-negative PKCdelta vector inhibited DFO-induced PKCdelta phosphorylation as well as IL-8 promoter activity. In addition, suppression of endogenous PKCdelta by siRNA significantly reduced DFO-induced IL-8 production. Collectively, these results suggest that PKCdelta plays a pivotal role in signaling pathways leading to iron chelator-induced IL-8 production in human IECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号