首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
VSH-1 is a mitomycin C-inducible, non-lytic, phage-like agent that packages random 7.5-kb fragments of the Brachyspira hyodysenteriae genome. VSH-1 is the first recognized mechanism for gene transfer between B. hyodysenteriae cells. To analyze the distribution of VSH-1 among spirochetes, a 344-bp probe for gene svp38, encoding the VSH-1 major head protein, was amplified by polymerase chain reaction and used in Southern blot hybridizations with genomic DNA from various spirochete genera. The svp38 probe hybridized to a 40-kb SalI-SmaI fragment of the B. hyodysenteriae B78(T) chromosome, indicating VSH-1 DNA insertion into the chromosome at a unique site. Restriction endonuclease digested DNAs of 27 spirochete strains representing six Brachyspira species (B. hyodysenteriae, B. innocens, B. pilosicoli, B. murdochii, B. intermedia, B. alvinipulli) contained a single fragment hybridizing with the svp38 probe. DNAs from spirochete species of the genera Treponema, Spirochaeta, Borrelia, and Leptospira did not hybridize with the probe. VSH-1-like agents appear to be widely distributed among Brachyspira species and, as has been demonstrated for B. hyodysenteriae, may serve as useful gene transfer agents for those other species.  相似文献   

4.
5.
Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the marine environment with the strains examined is favored during times of elevated bacterial and GTA abundance as well as in areas of higher salinity.  相似文献   

6.
The gene transfer agent produced by Rhodobacter capsulatus (RcGTA) is a model for several virus-like elements that seem to function solely for mediating gene exchange. Several genes that encode RcGTA are clearly related to bacteriophage genes but the cellular regulatory mechanisms that control RcGTA production indicate that RcGTA is more than just a defective prophage. Genome sequencing projects show that seemingly functional RcGTA-like structural gene clusters are present in many other species of alpha-proteobacteria, which might also produce RcGTA-like particles. Here, we use the genomic sequence data that are currently available to identify candidate GTA-producing species and propose an evolutionary scheme for RcGTA-like elements in the alpha-proteobacteria.  相似文献   

7.
8.
基因转移因子(Gene Transfer Agent,GTA)是一种由细菌释放的、形态和有尾病毒类似的生物颗粒。GTA颗粒携带的遗传物质是宿主基因组的随机小片段而不包含编码GTA自身的基因或病毒基因组。根据4个模式菌株释放的GTA的研究,GTA具有高效的,种间介导基因水平转移的功能。近年来大规模细菌基因组测序,发现编码GTA的基因簇广泛存在于海洋细菌基因组上,GTA是在海洋环境中发生水平基因转移的重要模式。本文在总结4个模式菌株释放的GTA的认识的基础上,着重描述海洋主要类群的细菌释放的GTA的特征,讨论在海洋生态系统中,GTA对水平基因转移的贡献,并对未来的研究进行了展望。  相似文献   

9.
10.
The gene transfer agent produced by Rhodobacter capsulatus (RcGTA) resembles a small tailed bacteriophage that packages almost random genomic DNA segments that may be transferred to other R. capsulatus cells. Gene transfer agents are produced by a number of prokaryotes; however, no receptors have been identified. We investigated the RcGTA recipient capability of wild‐type R. capsulatus cells at different culture growth phases, and found that the frequency of RcGTA‐dependent acquisition of an allele increases as cultures enter the stationary phase. We also found that RcGTA adsorption to cells follows a similar trend. RcGTA recipient capability and adsorption were found to be dependent on the GtaR/I quorum‐sensing (QS) system. Production of an extracellular polysaccharide was found to be regulated by GtaR/I QS, as was production of the cell capsule. A number of QS‐regulated putative polysaccharide biosynthesis genes were identified, and mutagenesis of two of these genes, rcc01081 and rcc01932, yielded strains that lack a capsule. Furthermore, these mutants were impaired in RcGTA recipient capability and adsorption, as was a non‐encapsulated wild‐type isolate of R. capsulatus. Overall, our results indicate that capsular polysaccharide is a receptor for the gene transfer agent of R. capsulatus, RcGTA.  相似文献   

11.
The impact of prophages on bacterial chromosomes   总被引:10,自引:0,他引:10  
  相似文献   

12.
Horizontal gene transfer is important in the evolution of bacterial and archaeal genomes. An interesting genetic exchange process is carried out by diverse phage-like gene transfer agents (GTAs) that are found in a wide range of prokaryotes. Although GTAs resemble phages, they lack the hallmark capabilities that define typical phages, and they package random pieces of the producing cell's genome. In this Review, we discuss the defining characteristics of the GTAs that have been identified to date, along with potential functions for these agents and the possible evolutionary forces that act on the genes involved in their production.  相似文献   

13.
Gene transfer agents (GTAs) are shaped like bacteriophage particles but have many properties that distinguish them from bacteriophages. GTAs play a role in horizontal gene transfer in nature and thus affect the evolution of prokaryotic genomes. In the course of studies on the extracellular production of designed RNAs using the marine bacterium Rhodovulum sulfidophilum, we found that this bacterium produces a GTA-like particle. The particle contains DNA fragments of 4.5 kb, which consist of randomly fragmented genomic DNA from the bacterium. This 4.5-kb DNA production was prevented while quorum sensing was inhibited. Direct observation of the particle by transmission electron microscopy revealed that the particle resembles a tailed phage and has a head diameter of about 40 nm and a tail length of about 60 nm. We also identified the structural genes for the GTA in the genome. Translated amino acid sequences and gene positions are closely related to those of the genes that encode the Rhodobacter capsulatus GTA. This is the first report of a GTA-like particle from the genus Rhodovulum. However, gene transfer activity of this particle has not yet been confirmed. The differences between this particle and other GTAs are discussed.  相似文献   

14.
15.
PC Fogg  AB Westbye  JT Beatty 《PloS one》2012,7(8):e43772
The gene transfer agent (RcGTA) of Rhodobacter capsulatus is the model for a family of novel bacteriophage-related genetic elements that carry out lateral transfer of essentially random host DNA. Genuine and putative gene transfer agents have been discovered in diverse genera and are becoming recognized as potentially an important source of genetic exchange and microbial evolution in the oceans. Despite being discovered over 30 years ago, little is known about many essential aspects of RcGTA biology. Here, we validate the use of direct fluorescence reporter constructs, which express the red fluorescent protein mCherry in R. capsulatus. A construct containing the RcGTA promoter fused to mCherry was used to examine the single-cell expression profiles of wild type and RcGTA overproducer R. capsulatus populations, under different growth conditions and growth phases. The majority of RcGTA production clearly arises from a small, distinct sub-set of the population in the wild type strain and a larger sub-set in the overproducer. The most likely RcGTA release mechanism concomitant with this expression pattern is host cell lysis and we present direct evidence for the release of an intracellular enzyme accompanying RcGTA release. RcGTA ORF s is annotated as a 'cell wall peptidase' but we rule out a role in host lysis and propose an alternative function as a key contributor to RcGTA invasion of a target cell during infection.  相似文献   

16.
In many pathogenic bacteria, genes that encode virulence factors are located in the genomes of prophages. Clearly bacteriophages are important vectors for disseminating virulence genes, but, in addition, do phage regulatory circuits contribute to expression of these genes? Phages of the lambda family that have genes encoding Shiga toxin are found in certain pathogenic Escherichia coli (known as Shiga toxin producing E. coli) and the filamentous phage CTXphi, that carries genes encoding cholera toxin (CTX), is found in Vibrio cholerae. Both the lambda and CTXphi phages have repressor systems that maintain their respective prophages in a quiescent state, and in both types of prophages this repressed state is abolished when the host cell SOS response is activated. In the lambda type of prophages, only binding of the phage-encoded repressor is involved in repression and this repressor ultimately controls Shiga toxin production and/or release. In the CTXphi prophage, binding of LexA, the bacterial regulator of SOS, in addition to binding of the repressor is involved in repression; the repressor has only limited control over CTX production and has no influence on its release.  相似文献   

17.
Phage as agents of lateral gene transfer   总被引:10,自引:0,他引:10  
When establishing lysogeny, temperate phages integrate their genome as a prophage into the bacterial chromosome. Prophages thus constitute in many bacteria a substantial part of laterally acquired DNA. Some prophages contribute lysogenic conversion genes that are of selective advantage to the bacterial host. Occasionally, phages are also involved in the lateral transfer of other mobile DNA elements or bacterial DNA. Recent advances in the field of genomics have revealed a major impact by phages on bacterial chromosome evolution.  相似文献   

18.
Gene transfer agents (GTAs) are genetic exchange elements that resemble small DNA bacteriophages that transfer random pieces of the producing cell's genome to recipient cells. The best‐studied GTA is that of Rhodobacter capsulatus, termed RcGTA. We discovered that the putative response regulator CtrA, which is essential for RcGTA production, is required for RcGTA‐mediated gene acquisition, and confirmed that a RecA homologue is required. It was also discovered that a DprA (DNA‐protecting protein A) homologue is essential for RcGTA‐mediated gene acquisition, and that dprA expression is induced by gtaI‐dependent quorum‐sensing and non‐phosphorylated CtrA. Modelling of the R. capsulatus DprA structure indicated the presence of a C‐terminal region that resembles a dsDNA‐binding protein domain. Purified His‐tagged R. capsulatus DprA protein bound to both single‐stranded (ss)DNA and double‐stranded (ds)DNA, but with a greater affinity for ssDNA. Additionally, DprA protected dsDNA from endonuclease digestion, and increased the rate of nucleation of Escherichia coli RecA onto ssDNA. Single‐cell expression analyses revealed that dprA is expressed in the majority of cells throughout a population. Overall, the results suggest that incorporation of RcGTA DNA into the recipient cell genome proceeds through a homologous recombination pathway resembling DNA recombination in natural transformation.  相似文献   

19.
20.
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号