首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the DTNB light chain of myosin on its enzymatic activities was examined by studying the superprecipitation of actomyosin and the actin-activated ATPase of heavy meromyosin (HMM) [EC 3.6.1.3]. Although the Ca2+-, Mg2+-, and EDTA-ATPase activities of control and DTNB myosin were practically the same, the superprecipitation of actomyosin prepared from actin and DTNB myosin occurred more slowly than that of control myosin. The apparent binding constant obtained from double-reciprocal plots of actin-activated ATPase of DTNB HMM was lower than that of control HMM. Recombination of DTNB myosin and HMM with DTNB light chains restored the original properties of myosin and HMM. The removal of DTNB light chain from myosin had no effect on the formation of the rigor complex between actin and myosin. These results suggest that the DTNB light chain participates in the interaction of myosin with actin in the presence of ATP.  相似文献   

2.
O Assulin  M M Werber  A Muhlrad 《FEBS letters》1986,197(1-2):328-334
Limited proteolysis has been used to study the influence of actin, in the absence or presence of regulatory proteins of the thin filament (tropomyosin and troponin), as well as that of the myofibrillar structure on the tryptic cleavage of the heavy meromyosin (HMM)/light meromyosin (LMM) hinge region in myosin heavy chain. Cleavage at the HMM/LMM hinge is almost absent in myofibrils, whereas this hinge is accessible to tryptic digestion in actomyosin, in native thin filaments attached to myosin and in myosin heavy chain alone. This observation indicates that it is the myofibrillar structure which profoundly affects the tryptic accessibility of this specific hinge region of myosin. This provides a good example of the manner by which a highly organized supramolecular structure might affect the chemical properties of a specific site in a macromolecule.  相似文献   

3.
T Chen  E Reisler 《Biochemistry》1984,23(11):2400-2407
Tryptic digestion of rabbit skeletal myofibrils under physiological ionic strength and pH conditions was used as a probe of cross-bridge interaction with actin in the presence of nucleotides and pyrophosphate. Under rigor conditions, digestion of myofibrils at 24 degrees C results in the formation of 25K, 110K [heavy meromyosin (HMM)], and light meromyosin (LMM) fragments as the main reaction products. Very little if any 50K peptide is generated in such digestions. In the presence of magnesium pyrophosphate, magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP), and MgATP, the main cleavage proceeds at two positions, 25K and 75K from the N-terminal portion of myosin, yielding the 25K, 50K, and 150K species. The relative amounts of the 50K, 110K, and 150K peptides and the rates of myosin heavy-chain digestion in the presence of pyrophosphate and AMPPNP indicate partial dissociation of myosin from actin. Direct centrifugation measurements of the binding of HMM and subfragment 1 (S-1) to actin in myofibrils confirm that cross-bridges partition between attached and detached states in the presence of these ligands. In the presence of MgADP, HMM and S-1 remain attached to actin at 24 degrees C. However, tryptic digestion of myofibrils containing MgADP is consistent with the existence of a mixed population of attached and detached cross-bridges, suggesting that only one head on each myosin molecule is attached to actin. As shown by tryptic digestion of myofibrils and the measurements of HMM and S-1 binding to actin, nucleotide- and pyrophosphate-induced dissociation of cross-bridges is more pronounced at 4 than at 24 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The interaction of actin with myosin was studied in the presence of ATP at low ionic strength by means of measurements of the actin-activated ATPase activity of myosin and superprecipitation of actomyosin. At high ATP concentrations the ATPase activities of myosin, heavy meromyosin (HMM) and myosin subfragment 1 (S-1) were activated by actin in the same extent. At low ATP concentrations the myosin ATPase activity was activated about 30-fold by actin, whereas those of HMM and S-1 were stimulated only several-fold. This high actin activation of myosin ATPase was coupled with the occurrence of superprecipitation. The activation of HMM or S-1 ATPase by actin shows a simple hyperbolic dependence on actin concentration, but the myosin ATPase was maximally activated by actin at a 2:1 molar ratio of actin to myosin, and a further increase in the actin concentration had no effect on the activation. These results suggest the presence of a unit for actin-myosin interaction, composed of two actin monomers and one myosin molecule in the filaments.  相似文献   

5.
To evaluate the role of the hydration layer on the protein surface of actomyosin, we compared the effects of urea and guanidine-HCl on the sliding velocities and ATPase activities of the actin-heavy meromyosin (HMM) system. Both chemicals denature proteins, but only urea perturbs the hydration layer. Both the sliding velocity of actin filaments and actin-activated ATPase activity decreased with increasing urea concentrations. The sliding movement was completely inhibited at 1.0 M urea, while actin filaments were bound to HMM molecules fixed on the glass surface. Guanidine-HCl (0-0.05 M) drastically decreased both the sliding velocity and ATPase activation of acto-HMM complexes. Under this condition, actin filaments almost detached from HMM molecules. In contrast, the ATPase activity of HMM without actin filaments was almost independent of urea concentrations <1.0 M and guanidine-HCl concentrations <0.05 M. An increase in urea concentrations up to 2.0 M partly induced changes in the ternary structure of HMM molecules, while the actin filaments were stable in this concentration range. Hydration changes around such actomyosin complexes may alter both the stability of part of the myosin molecules, and the affinity for force transmission between actin filaments and myosin heads.  相似文献   

6.
We explored the potential of contractile proteins, actin and myosin, as biosensors of solutions containing mercuric ions. We demonstrate that the reaction of HgCl2 with myosin rapidly inhibits actin-activated myosin ATPase activity. Mercuric ions inhibit the in vitro analog of contraction, namely the ATP-initiated superprecipitation of the reconstituted actomyosin complex. Hg reduces both the rate and extent of this reaction. Direct observation of the propulsive movement of actin filaments (10 nm in diameter and 1 microm long) in a motility assay driven by a proteolytic fragment of myosin (heavy meromyosin or HMM) is also inhibited by mercuric ions. Thus, we have demonstrated the biochemical, biophysical and nanotechnological basis of what may prove to be a useful nano-device.  相似文献   

7.
A method of affinity chromatography based on the trapping of actin filaments within agarose gel beads is described. This method can be used for the purification of myosin and its active proteolytic subfragments, as well as for studies on the interaction between actin and these proteins. Actin columns stabilized by phalloidin bind myosin, heavy meromyosin (HMM), and heavy meromyosin subfragment 1 (HMM-S1) specifically and reversibly. The effect of pyrophosphate and KCl on the dissociation of actomyosin, acto-HMM, or acto-HMM-S1 complex is reported. We also describe the single-step purification of myosin from a crude rabbit psoas muscle extract.  相似文献   

8.
S Oda  C Oriol-Audit  E Reisler 《Biochemistry》1980,19(24):5614-5618
Experiments have been carried out to assess the involvement of the myosin light chains [obtained by treatment of myosin with 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2)] in the control of cross-bridge movement and actomyosin interactions. Chymotryptic digestions of myosin, actomyosin, and myofibrils do not detect any Ca2+-induced change in the subfragment 2 region of myosin. Actin, like Ca2+, protects the in situ Nbs2 light chains from proteolysis and causes a partial switch in the digestion product of myosin from subfragment 1 to heavy meromyosin. This effect is independent of the state of aggregation of myosin, and it persists in acto heavy meromyosin and in actinomyosin in 0.6 M NaCl. Digestions and sedimentation studies indicate that there is no direct acto light chain interaction. Proteolysis of myosin shows a gradual transition from production of heavy meromyosin to subfragment 1 with lowering of the salt level. In the presence of Ca2+ heavy meromyosin is generated both in digestions of polymeric and of monomeric myosin. These results are explained in terms of localized changes within the Nbs2 light chains and subfragment 1. Subunit interactions in the myosin head lead to a Ca2+-induced reduction in the affinity of heavy meromyosin for actin in the presence of MgATP. The resulting Ca2+ inhibition of the actin-activated ATPase of myosin can be detected at high salt concentrations(75 mM KCl).  相似文献   

9.
Treatment of rabbit skeletal muscle heavy meromyosin (HMM) with the sulfhydryl reagent N-ethylmaleimide (NEM) produces a species of HMM which remains tightly bound to actin in the presence of MgATP. NEM-HMM forms characteristic "arrowhead" complexes with actin which persist despite rinses with MgATP. NEM-HMM inhibits the actin activation of native HMM-ATPase activity, the superprecipitation of actomyosin, the contraction of glycerinated muscle myofibrils, and the contraction of cytoplasmic strands of the soil amoeba Chaos carolinensis. However, NEM-HMM does not interfere with in vitro microtubule polymerization or beating of demembranated cilia.  相似文献   

10.
Hegyi G  Belágyi J 《The FEBS journal》2006,273(9):1896-1905
Previous cross-linking studies [Kim E, Bobkova E, Hegyi G, Muhlrad A & Reisler E (2002) Biochemistry 41, 86-93] have shown that site-specific cross-linking among F-actin monomers inhibits the motion and force generation of actomyosin. However, it does not change the steady-state ATPase parameters of actomyosin. These apparently contradictory findings have been attributed to the uncoupling of force generation from other processes of actomyosin interaction as a consequence of reduced flexibility at the interface between actin subdomains-1 and -2. In this study, we use EPR spectroscopy to investigate the effects of cross-linking constituent monomers upon the molecular dynamics of the F-actin complex. We show that cross-linking reduces the rotational mobility of an attached probe. It is consistent with the filaments becoming more rigid. Addition of heavy meromyosin (HMM) to the cross-linked filaments further restricts the rotational mobility of the probe. The effect of HMM on the actin filaments is highly cooperative: even a 1 : 10 molar ratio of HMM to actin strongly restricts the dynamics of the filaments. More interesting results are obtained when nucleotides are also added. In the presence of HMM and ADP, similar strongly reduced mobility of the probe was found than in a rigor state. In the presence of adenosine 5'[betagamma-imido] triphosphate (AMPPNP), a nonhydrolyzable analogue of ATP, weak binding of HMM to either cross-linked or native F-actin increases probe mobility. By contrast, weak binding by the HMM/ADP/AlF4 complex has different effects upon the two systems. This protein-nucleotide complex increases probe mobility in native actin filaments, as does HMM + AMPPNP. However, its addition to cross-linked filaments leaves probe mobility as constrained as in the rigor state. These findings suggest that the dynamic change upon weak binding by HMM/ADP/AlF4 which is inhibited by cross-linking is essential to the proper mechanical behaviour of the filaments during movement.  相似文献   

11.
Ca2+ "free" actomyosin suspensions as well as actin heavy meromyosin (HMM) solutions in the presence of Ca2+ showed no contractile response (superprecipitation) and had low steady-state Mg2+-ATPase activity. Under the same experimental conditions both the enzymatic activity increased and contractile response was restored if the solubility of the proteins was depressed by the addition of polyethylene glycol 4000 (PEG-4000). The stability of the enzymatically active actomyosin or actin HMM complexes was 10 times lower in cleared solutions than in the insoluble actomyosin or actin HMM suspensions. It was concluded that soluble actomyosin or actin HMM solutions are inadequate test tube models for studying muscular contraction.  相似文献   

12.
《The Journal of cell biology》1985,101(5):1850-1857
We have used two actin-binding proteins of the intestinal brush border, TW 260/240 and villin, to examine the effects of filament cross-linking and filament length on myosin-actin interactions. TW 260/240 is a nonerythroid spectrin that is a potent cross-linker of actin filaments. In the presence of this cross-linker we observed a concentration- dependent enhancement of skeletal muscle actomyosin ATPase activity (150-560% of control; maximum enhancement at a 1:70-80 TW 260/240:actin molar ratio). TW 260/240 did not cause a similar enhancement of either acto-heavy meromyosin (HMM) ATPase or acto-myosin subfragment-one (S1) ATPase. Villin, a Ca2+-dependent filament capping and severing protein of the intestinal microvillus, was used to generate populations of actin filaments of various lengths from less than 20 nm to 2.0 microns; (villin:actin ratios of 1:2 to 1:4,000). The effect of filament length on actomyosin ATPase was biphasic. At villin:actin molar ratios of 1:2- 25 actin-activated myosin ATPase activity was inhibited to 20-80% of control values, with maximum inhibition observed at the highest villin:actin ratio. The ATPase activities of acto-HMM and acto-S1 were also inhibited at these short filament lengths. At intermediate filament lengths generated at villin:actin ratios of 1:40-400 (average lengths 0.26-1.1 micron) an enhancement of actomyosin ATPase was observed (130-260% of controls), with a maximum enhancement at average filament lengths of 0.5 micron. The levels of actomyosin ATPase fell off to control values at low concentrations of villin where filament length distributions were almost those of controls. Unlike intact myosin, the actin-activated ATPase of neither HMM nor S1 showed an enhancement at these intermediate actin filament lengths.  相似文献   

13.
Incubation of rabbit skeletal myosin with an extract of light chain kinase plus ATP phosphorylated the L2 light chain and modified the steady state kinetics of the actomyosin ATPase. With regulated actin, the ATPase activity of phosphorylated myosin (P-myosin) was 35 to 181% greater than that of unphosphorylated myosin when assayed with 0.05 to 5 micro M Ca2+. Phosphorylation had no effect on the Ca2+ concentration required for half-maximal activity, but it did increase the ATPase activity at low Ca2+. With pure actin, the percentage of increase in the actomyosin ATPase activity correlated with the percentage of phosphorylation of myosin. Steady state kinetic analyses of the actomyosin system indicated that 50 to 82% phosphorylation of myosin decreased significantly the Kapp of actin for myosin with no significant effect on the Vmax. Phosphorylaton of heavy meromyosin similarly modified the steady state kinetics of the acto-heavy meromyosin system. Both the K+/EDTA- and Mg-ATPase activities of P-myosin and phosphorylated heavy meromyosin were within normal limits indicating that phosphorylaiion had not altered significantly the hydrolytic site. Phosphatase treatment of P-myosin decreased both the level of phosphorylation of L2 and the actomyosin ATPase activity to control levels for unphosphorylated myosin. It is concluded levels for unphosphorylated myosin. It is concluded from these results that the ability of P-myosin to modify the steady state kinetics of the actomyosin ATPase was: 1) specific for phosphorylation; 2) independent of the thin filament regulatory proteins.  相似文献   

14.
Tetsu Hozumi  Katsuhisa Tawada 《BBA》1974,347(3):469-482
1. Actin and heavy meromyosin, initially mixed in a Mg-ATP solution, began to form the rigor complex slowly after ATP in the solution had been completely hydrolyzed.

2. This was because the heavy meromyosin-product complex formed via ATP hydrolysis was almost completely dissociated from actin even in the absence of ATP and as soon as this heavy meromyosin-product complex was decomposed, the heavy meromyosin combined with actin forming the rigor complex.

3. Linear plots were obtained when the reciprocal of the excess rate of the actin-accelerated rigor complex formation was plotted against the reciprocal of the added actin concentration as similar with those made on the steady acto-heavy meromyosin ATPase.

4. The V of the rigor complex formation process was about 1/5 of that of the steady acto-heavy meromyosin ATPase activity, showing that the actomyosin ATPase activity could not be explained merely by the actin-accelerated decomposition of the heavy meromyosin-product complex.

5. The same analyses were carried out on myosin subfragment 1.

6. Our results could be explained by considering the two non-identical active sites of myosin, and we propose the following scheme for the actomyosin ATPase.

7. Actin accelerates the rate-limiting bond hydrolysis in the ATPase occurring at one active site of myosin, as well as the rate-limiting decomposition of the heavy meromyosin-product complex formed at another site.  相似文献   


15.
The association of fluorescently labeled heavy meromyosin (HMM) and F-actin was measured by time-resolved fluorescence depolarization. The effects of varying the protein concentrations, temperature, KCl concentration, and pH were determined. Measurements of HMM mobility supported a model of no interaction between the two heads in the absence of actin. Measurements of actin binding, when compared with results for myosin subfragment I, indicated that the two heads of HMM do not bind independently in the rigor complex. This could result from actin-transmitted negative cooperativity or from steric inhibition due to the structure of HMM. For HMM and actin in 0.15 7 kcl at 25 degrees C: Ka = 3.9 X 10(7) M-1, deltaHco' = 36 +/- 2 J M-1, deltaSco' = 0.26 +/- 0.02 kJ M-1 K-1; the slope of ln Ka vs. [KCl]1/2 = -3.88 and the pH of maximum association was 6.9.  相似文献   

16.
The cell wall of the green alga Mougeotia was enzymatically digested by macerase and cellulysin. Released protoplasts were spread on poly-L-ornithine, formvar-carbon-coated grids, and cell fragments were collected for structural characterization. Large numbers of 5–7 nm filaments are seen which may be decorated with heavy meromyosin (HMM), a digest product of muscle myosin that binds specifically to actin, supporting the hypothesis that the phytochrome-mediated chloroplast movements in these algae are driven by a contractile complex of actomyosin.Abbreviation HMM heavy meromyosin Dedicated to Professor Wolfgang Haupt on the occasion of his 60th birthday  相似文献   

17.
Biochemical studies in solution and with myosin motor fragments adsorbed to surfaces (in vitro motility assays) are invaluable for elucidation of actomyosin function. However, there is limited understanding of how surface adsorption affects motor properties, e.g., catalytic activity. Here we address this issue by comparing the catalytic activity of heavy meromyosin (HMM) in solution and adsorbed to standard motility assay surfaces [derivatized with trimethylchlorosilane (TMCS)]. For these studies we first characterized the interaction of HMM and actomyosin with the fluorescent ATP analogue adenosine 5'-triphosphate Alexa Fluor 647 2'- (or 3'-) O-(N-(2-aminoethyl)urethane) hexa(triethylammonium) salt (Alexa-ATP). The data suggest that Alexa-ATP is hydrolyzed by HMM in solution at a slightly higher rate than ATP but with a generally similar mechanism. Furthermore, Alexa-ATP is effective as a fuel for HMM-propelled actin filament sliding. The catalytic activity of HMM on TMCS surfaces was studied using (1) Alexa-ATP in total internal reflection fluorescence (TIRF) spectroscopy experiments and (2) Alexa-ATP and ATP in HPLC-aided ATPase measurements. The results support the hypothesis of different HMM configurations on the surface. However, a dominant proportion of the myosin heads were catalytically active, and their average steady-state hydrolysis rate was slightly higher (with Alexa-ATP) or markedly higher (with ATP) on the surface than in solution. The results are discussed in relation to the use of TMCS surfaces and Alexa-ATP for in vitro motility assays and single molecule studies. Furthermore, we propose a novel TIRF microscopy method to accurately determine the surface density of catalytically active myosin motors.  相似文献   

18.
Protein kinase C phosphorylates different sites on the 20,000-Da light chain of smooth muscle heavy meromyosin (HMM) than did myosin light chain kinase (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072). Although protein kinase C incorporates 1 mol of phosphate into 1 mol of 20,000-Da light chain when either HMM or the whole myosin molecule is used as a substrate, it catalyzes the incorporation of up to 3 mol of phosphate/mol of 20,000-Da light chain when the isolated light chains are used as a substrate. Threonine is the major phosphoamino acid resulting from phosphorylation of HMM by protein kinase C. Prephosphorylation of HMM by protein kinase C decreases the rate of phosphorylation of HMM by myosin light chain kinase due to a 9-fold increase of the Km for prephosphorylated HMM compared to that of unphosphorylated HMM. Prephosphorylation of HMM by myosin light chain kinase also results in a decrease of the rate of phosphorylation by protein kinase C due to a 2-fold increase of the Km for HMM. Both prephosphorylations have little or no effect on the maximum rate of phosphorylation. The sequential phosphorylation of HMM by myosin light chain kinase and protein kinase C results in a decrease in actin-activated MgATPase activity due to a 7-fold increase of the Km for actin over that observed with phosphorylated HMM by myosin light chain kinase but has little effect on the maximum rate of the actin-activated MgATPase activity. The decrease of the actin-activated MgATPase activity correlates well with the extent of the additional phosphorylation of HMM by protein kinase C following initial phosphorylation by myosin light chain kinase.  相似文献   

19.
The addition of either smooth muscle or brain tropomyosin to skeletal muscle actoheavy meromyosin (HMM) or acto-myosin subfragment-1 (SF1) produces an activation of the actin-activated ATPase activity up to 100%. This contrasts with the opposite, inhibitory effect produced by skeletal muscle tropomyosin. The degree of activation or inhibition depends on the ionic conditions, which influence the affinities of tropomyosin and HMM or SF1 for actin as well as on the molar ratio of actin to myosin.Enzyme kinetic analysis indicates that the inhibitory effect of skeletal muscle tropomyosin results from an approximately six- to tenfold increase in the apparent affinity (Kapp) of the myosin head for the F-actin-tropomyosin complex with a concomitant six- to tenfold reduction in the maximal turnover rate (Vmax). Thus, there is no direct competition of skeletal muscle tropomyosin and myosin for the same site on actin. Brain tropomyosin has an opposite effect, decreasing the apparent affinity with concomitant increase in the Vmax.The effect of smooth muscle tropomyosin is more complex. At high ratios of myosin to actin this tropomyosin produces the same change in the Kapp as skeletal muscle tropomyosin but yields a value of Vmax that is about twofold higher. At lower molar ratios (below about 1 to 5 myosin subfragments to actin) the activating effect of this tropomyosin remains unchanged while the apparent affinity decreases to that observed for pure F-actin.On the basis of these data as well as from experiments carried out at fixed actin and varying SF1 concentrations, it is concluded that tropomyosins act in general as allosteric un-competitive inhibitors or activators of actomyosin by increasing or reducing the co-operative activation of myosin by actin at the level of product release.  相似文献   

20.
1. Gel-filtration results indicate that the major component of inhibitory-factor preparations isolated by dissociation of the troponin complex consisted of a protein of subunit weight 23000 daltons. By the same procedure a molecular weight of 18000 was obtained for the calcium-sensitizing factor. 2. The inhibitory factor is specific for the actomyosin type of ATPase and ITPase. It is effective on desensitized actomyosin, natural actomyosin and intact myofibrils. 3. For inhibition, the actomyosin ATPase must be stimulated by Mg(2+), Ca(2+) or Mn(2+). The Co(2+)-, Cd(2+)- or Zn(2+)-stimulated ATPases are not affected. 4. Biological activity is stable to treatment with dissociating agents, heat, pH11, pH1 and carboxymethylation. 5. Increasing amounts of actin, but not myosin or tropomyosin, progressively neutralize the inhibitory activity when added to desensitized actomyosin or myofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号