首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary A reexamination of Physoderma maculare Wallroth the type species of the genus, on Alisma, confirms Clinton's (1902) account of the production of an epibiotic stage from resting spore zoospores. The latter on mature host tissue may also give rise to the endobiotic stage which bears resting spores. On seedlings, however, resting spore zoospores produce only epibiotic sporangia. The fungus could not successfully infect Sagittaria, a closely related host.Contribution No. 1152  相似文献   

2.
Summary Several monocentric chytrid species of the generaPhlyctochytrium,Rhizidium,Chytridium,Chytriomyces andKarlingia were isolated on various substrata from soils of Oceania. Among these are two new species,Phlyctochytrium megastomum andRhizidium endosporangiatum. The former species is characterized chiefly by sporangia with an usually large apical, subapical, or a lateral exit orifice, the persistence of remnants of the pailla wall at the edge of the exit orifice, and by small zoospores. Rhizidium endosporangiatum is characterized at first primarily by predominantly spherical sporangia which develop 1 to 8 broad papillae. At maturity these papillae give them an angular shape. The exit papillae deliquesce at the tip, and through them protrude prominent arms of an endosporangium which expands and in which the zoospores usually swarm briefly. Willoughby's Chytridium parasiticum occurred abundantly as a parasite ofNowakowskiella sp.,Pythium sp., andPhytophthora sp. and developed epibiotic resting spores like those ofChytriomyces. Accordingly, this parasite is transferred to this genus and renamedChytriomyces willoughbyii because the nameparasiticum is preempted by the author's previously describedChytriomyces parasiticus.This study has been supported by a grant from the National Science Foundation, Washington, D.C.  相似文献   

3.
Physoderma calami, a chytrid (Phycomycetes), has not been studied or apparently even collected in Europe since 1895 and has never been recorded in this hemisphere. Material widely distributed in herbaria indicated it was a Physoderma but no details save color, shape, and size of resting spores were known. A study of living material from Vermont indicates resting spore germination occurs by dehiscence of a lid and production of a sporangium with zoospores. The latter may form either an epibiotic or “ephemeral” sporangial stage and zoospores, or an endobiotic one, with extensive polycentric thallus bearing turbinate cells along the rhizoids, and, as outgrowths of these turbinate cells, straw-colored, thick-walled resting spores. The latter stage produces dark-brown spots on infected parts of the host.  相似文献   

4.
The genus Rhizomastix is a poorly known group of amoeboid heterotrophic flagellates living as intestinal commensals of insects, amphibians or reptiles, and as inhabitants of organic freshwater sediments. Eleven Rhizomastix species have been described so far, but DNA sequences from only a single species have been published. Recently, phylogenetic analyses confirmed a previous hypothesis that the genus belongs to the Archamoebae; however, its exact position therein remains unclear. In this study we cultured nine strains of Rhizomastix, both endobiotic and free‐living. According to their light‐microscopic morphology and SSU rRNA and actin gene analyses, the strains represent five species, of which four are newly described here: R. bicoronata sp. nov., R. elongata sp. nov., R. vacuolata sp. nov. and R. varia sp. nov. In addition, R. tipulae sp. nov., living in the intestine of crane flies, is separated from the type species, R. gracilis. We also examined the ultrastructure of R. elongata sp. nov., which revealed that it is more complicated than the previously described R. libera. Our data show that either the endobiotic lifestyle of some Rhizomastix species has arisen independently from other endobiotic archamoebae, or the free‐living members of this genus represent a secondary switch from the endobiotic lifestyle.  相似文献   

5.
A new species of aquatic Phycomycete, Physoderma dulichii Johns, parasitic on the aquatic sedge Dulichium arundinaceum (L.) Britt., is described from northern Michigan. This parasite infects and kills the upper epidermal cells of the host leaves. Macroscopically, infection by P. dulichii is indicated by striking brown bands with irregular margins, at intervals on the upper surfaces of the leaves. Like other species of Physoderma, this organism's development includes two distinct phases, an epibiotic monocentric phase producing asexual zoospores and an endobiotic polycentric phase bearing thick-walled resting spores that germinate after an extensive period of maturation at low temperature to form zoospores. The morphology and development of the two phases and of resting spore germination are reported in detail. Only the immature leaves of the host are susceptible to infection, which may be initiated by the introduction of mature resting spores, zoospores from germinated resting spores, or zoospores from epibiotic sporangia. Resting-spore zoospores may also produce the endobiotic stage directly. Initiation of infection in nature requires that the terminal cluster of immature leaves on the host plant be submerged, but infection of subsequently formed leaves of emergent culms can be accomplished through the agency of zoospores from epibiotic sporangia on older leaves. The relation of infected stands of hosts to their environment is discussed and the importance of standing water to infection noted. The geographical distribution of the parasite shows correlation with the drainage basins of the Great Lakes, the St. Lawrence River, and the northern Atlantic Coastal Plain  相似文献   

6.
A further study of Physoderma hydrocotylidis from California on its host Hydrocotyle ranunculoides gives further details on its structure and development. EM micrographs reveal that the notably thin wall of the resting spore consists of an outer, an intermediate, and an inner layer. The complete wall thickness from measurements of these EM preparations is only 0.5 μm, the thinnest of any known Physoderma resting spore. Such resting spores germinate readily in 2–5 h by the dehiscence of a broad cap and formation of a protruding endosporganium. Zoospores from the latter infect epidermal host cells and produce either the endobiotic, polycentric rhizoidal system with tenuous filaments, turbinate cells and eventually resting spores, or a hitherto unknown epibiotic, monocentric, rhizidiaceous sporangial stage. Zoospores from the latter may all bear colorless lipid globules or all faintly orange-colored ones.  相似文献   

7.
A new genus, Endoreticulatus n. g., is described for the microsporidium Pleistophora fidelis (Hostounský & Weiser, 1975) based on light and electron microscopic studies of a microsporidium in the Colorado potato beetle, Leptinotarsa decemlineata (Say). This latter microsporidium is considered to be conspecific with P. fidelis because both isolates have been shown to be infectious for L. decemlineata where infection is limited to the epithelial cells of the midgut; both are haplokaryotic and develop as groups of sporoblasts and spores in subpersistent vacuoles in the host cell. In addition, meronts, sporonts, and spores of each isolate often occur simultaneously in a common cell, and by light microscopy they both appear similar. Ultrastructural studies of the isolate from L. decemlineata revealed that all developmental stages occur in parasitophorous vacuoles derived from cisternae of rough endoplasmic reticulum of the host cell cytoplasm. Based on the unique nature of the parasitophorous vacuole, a new genus, Endoreticulatus, is proposed for P. fidelis. The genus is compared with the other genera whose species undergo multisporous sporogony in sporophorous vesicles. In addition, the nature of the parasitophorous vacuole of Endoreticulatus fidelis (Hostounský & Weiser, 1975) n. comb. is compared with the parasitophorous vacuole known to encase various developmental stages of several other microsporidian species.  相似文献   

8.
Sparrow , Frederick K. (U. Michigan, Ann Arbor), Joyce E. Griffin , and Robert M. Johns . Observations on chytridiaceous parasites of phanerogams. XI. A Physoderma on Agropyron repens. Amer. Jour. Bot. 48(9): 850–858. Illus. 1961.—A Physoderma has been found in Michigan on Agropyron repens, which produces dark-brown, non-erumpent streaks up to 20 mm (usually 4–6 mm) in length by 0.5 mm in width and very local discoloration of the leaf blades and sheaths. There is no systemic infection, and plants parasitized are normal in size and bear flowers. Resting spores upon germination produce zoospores which may develop either into the endobiotic, poly-centric, resting spore-bearing thallus or into monocentric, epibiotic, ephemeral sporangia. The latter bear either colorless or orange globuled zoospores. These zoospores may give rise to new epibiotic sporangia, or, apparently without fusing in pairs, to the endobiotic system. Comparison with other congeneric fungi reported on Agropyron repens reveals the Michigan fungus to be distinct from them. Whether it can be embraced within Physoderma graminis (Büsgen) de Wild. or other described taxa on grasses awaits the results of future cross-inoculation studies.  相似文献   

9.
Lingappa , Yamuna . (U. Michigan, Ann Arbor.) The development and cytology of the epibiotic phase of Physoderma pulposum. Amer. Jour. Bot. 46(3) : 145-150. Illus. 1959.—Physoderma pulposum, a chytrid parasite on Chenopodium album L. and Atriplex patula L., has a zoosporangial epibiotic phase. The latter consists of extramatrical sporangia and intramatrical bushy rhizoids, both enclosed in large protruding galls. The sporangia are subspherical, up to 350μ in diameter, and may produce hundreds of planospores. If planospores settle on the host surface, they develop narrow germ tubes which penetrate the epidermal cells and develop into rhizoids. The planospore body, however, remains on the host surface and develops into a mature epibiotic sporangium in about 20-25 days at 16°C., 12-15 days at 20-25°C., or 6-8 days at 30°C. During development, its nucleus and daughter nuclei divide mitotically with intranuclear spindles until the sporangium contains several hundred nuclei. This is followed by progressive cleavage which delimits the planospore rudiments. When mature sporangia are placed in fresh water, the planospores are quickly formed within 1 hr. at 25°C. and begin to swarm within the sporangia. They escape in large numbers through an opening formed by the deliquescence of a papillum in the sporangial wall. The planospores are subspherical or elongate, 3-5 × 4-6 μ, and each has an eccentric orange-yellow refractive globule and a flagellum 18-22 μ in length. The electron micrographs of the flagella indicate that the flagella are absorbed from tip backward during encystment of the planospores. By periodic inoculation of the host plants with planospores from epibiotic sporangia, as well as from germinating resting sporangia, generation after generation of epibiotic sporangia have been obtained for 4 years. This proves the existence of a eucarpic, epibiotic, ephemeral zoosporangial phase in P. pulposum. Field observations on the duration and sequence of development of the fungus indicate that the endobiotic resting sporangial phase always follows the epibiotic phase. The results of infection experiments also indicate that the epi- and endobiotic phases belong to one and the same fungus, P. pulposum.  相似文献   

10.
A new genus and species of microsporidia, Ovavesicula popilliae n. g., n. sp., is described from the Japanese beetle, Popillia japonica, on the basis of studies by light and electron microscopy. Parasite development primarily occurs within the Malpighian tubules of larvae, and spores are formed in a sporophorous vesicle. Meronts have diplokaryotic nuclei, develop in direct contact with the host cell cytoplasm, and divide by binary fission. Sporonts have unpaired nuclei, develop within a thick sporophorous vesicle, and undergo synchronous nuclear divisions producing plasmodia with 2, 4, 8, 16, and 32 nuclei. Cytokinesis of sporogonial plasmodia does not occur until karyokinesis is complete with 32 nuclei. Intact sporophorous vesicles are ovoid, containing numerous secretory products, and are surrounded by a persistent two-layered wall. The uninucleate spores are regularly formed in groups of 32, and the polar tube in each has six coils.  相似文献   

11.
Three ciliate species from Australia and Norway were examined by silver impregnation, biometry, and scanning electron microscopy. Trochiliopsis australis n. sp. (order Nassulida, family Microthoracidae) differs from the single other known species of the genus, T. opaca, by its prominent ridges on the left side, the distinctly longer anterior segment of somatic kinety 2, and by the doubled total number of kinetosomes. Pelagohalteria n. g. (order Oligotrichida, family Halteriidae) differs from Halteria by the structure of the bristle complexes, which are composed of a vertically and a horizontally oriented row of kinetosomes. Two Halteria species belong to the new genus: P. viridis (Fromentel, 1876) n. comb., which is redescribed here, and P. cirrifera (Kahl, 1935) n. comb. Strobilidium lacustris n. sp. (order Oligotrichida, family Strobilidiidae) differs from its nearest relative, S. velox, by the smooth pellicle, the absence of symbiotic green algae, and by its larger size.  相似文献   

12.
Summary A hitherto unnoted species of Physoderma on the basal leaves of Juncus pelocarpus Mey. is described. The fungus produces light brown irregularlyplaced spots on the outermost leaves. The endobiotic system is composed in addition to rhizoids of non-septate or 1–2 septate turbinate cells, resting spores and ovate haustorial-bearing cells. Resting spores germinate by dehiscence of a lid and protrusion of a finger-like zoosporangium. No epibiotic stage has as yet been seen. The host range of the fungus has not as yet been studied. This is the first account of a Physoderma on a member of the Juncaceae.Acknowledgement is made to the National Science Foundation for support of this project.  相似文献   

13.
The morphology of single-sporangial isolates of lettuce, tomato, mustard, and oat Olpidium brassicae (Wor.) Dang. growing in their respective hosts as well as in cowpea were compared in situ and after extraction from the roots. The sporangia, zoospores, and resting spores of all isolates were within the established limits of the species. Single exit tubes or pores predominated which means that these isolates should not be transferred to the genus Pleotrachelus. A satisfactory assay for the presence of resting spores was developed by air-drying of the roots for a week or longer. This treatment killed zoospores and vegetative sporangia, but not resting spores. Factors affecting resting spore formation were investigated unsuccessfully. The thermal death point of zoospores of mustard isolates that did not form resting spores was between 40 and 45 C for 10 min.  相似文献   

14.
Sparrow , Frederick K. and Yamunga Lingappa . (U. Michigan, Ann Arbor.) Observations on chytridiaceous parasites of phanerogams. VIII. Urophlyctis (Physoderma) pluriannnlatus and U. majus. Amer. Jour. Bot. 47(3): 202—209. Illus. 1960.—Urophlyctis pluriannulatus, an obligate parasite of Sanicula spp., has an endobiotic phase which is strongly polycentric and produces small crateriform galls on the petioles and blades of the host leaves. The agent accomplishing infection is not known but is probably a zygote. The first cell of the parasite established in the host is the so-called “primary turbinate organ.” This becomes multinucleate, is somewhat pyriform and becomes multicellular by 2 methods: (1) by cleavage into peripheral segments; or (2) by division into cells, each with its own cell wall. Replication of the thallus is accomplished by the production of nucleated outgrowths bearing haustoria which elongate, become ribbon-like, somewhat roughened and lumened, and produce distally turbinate organs of a second order. Tertiary, etc. turbinate organs are produced in like manner. Resting spores usually form at the tip of an extremely short outgrowth from the apex of a turbinate organ. These bear a supra-equatorial crown of 7—10 branched haustoria. Rarely, monocentric thalli are formed, in which a single turbinate organ becomes converted into a resting spore. All nuclear division figures were intranuclear. The fungus produced marked enlargement of infected host cells and their nuclei, and caused division of neighboring cells. As development continues, lysis of the surrounding host walls takes place and a large cavity bearing a dense symplast and numerous host nuclei is formed, within which is the thallus of the parasite. At maturity, all traces of symplast and of fungus, except for resting spores, disappear. Urophlyctis majus, a parasite on leaves of Rumex orbiculatus, hitherto known only from its resting spore stage, has a pattern of development strikingly similar to that of U. pluriannulatus. Here, however, turbinate cells only form peripheral segments. Furthermore, the “hyphae” are smooth and without a lumen. Aside from size differences, the mature thallus with resting spores, unbranched (not branched) haustorial tufts, etc. is like that of the Sanicula parasite. The galls produced were compartmentalized, dark red to black, usually surrounded by a reddish zone, and early dropped from the leaf. No undoubted evidence of the epibiotic gametangial phase was found in either species.  相似文献   

15.
从形态学而论,烟杆藓属(Buxbaumia Hedw.)在苔藓植物中是一个独特的类型。该文简要介绍了烟杆藓属的历史和该属在中国的研究状况,以及该属的模式种烟杆藓首次在中国的发现。对烟杆藓在新疆的着生生境及群落状况做了详细介绍, 还就扫描电子显微镜观察烟杆藓的孢蒴、蒴齿和孢子形态、中国烟杆藓属分种检索表及属的系统关系进行观察和探讨。  相似文献   

16.
Species of the marine benthic dinoflagellate genus Gambierdiscus are the principal cause of Ciguatera fish poisoning. This genus has been recorded from tropical to temperate oceans, although Gambierdiscus species have rarely been found in Chinese waters. Our work revealed the morphological and genetic characteristics of three potentially toxic Gambierdiscus species observed in the temperate to subtropical waters of China. The fine thecal morphology was determined based on light microscopy and scanning electron microscopy analyses, and these species were also characterized by sequencing the D1–D3 and D8–D10 regions of the LSU rDNA. The morphological and genetic data indicated that these three Gambierdiscus species were G. pacificus, G. australes and G. caribaeus. This work provides the first report of these species in Chinese waters, which increases the known species distribution of this genus.  相似文献   

17.
Cleistoiodophanus represents a new coprophilous genus of the tribe Iodophaneae in the Ascobolaceae (Pezizales). The only species thus far discovered, C. conglutinatus, is described and illustrated. Aspects of its cytological development are described from cultures obtained from apothecia found on sheep dung near Gainesville, Florida. Plasmogamy occurs in acogonial coils, two or three cells of which give rise to ascogenous hyphae. Ascogonia are quickly enclosed by vegetative hyphae and the ascocarp continues in a cleistohymenial development. Unlike Iodophanus and related genera, the excipulum remains intact even after spore maturation and the asci push through the epihymenial regions to release spores. The asci are characteristically thickened at their apices, diffusely amyloid, and somewhat saccate. The asci are predominantly 8-spored, but have been found with four or 16 spores per ascus. A previously undescribed Oedocephalum imperfect stage was induced in culture.  相似文献   

18.
The epiphytic fern genus Serpocaulon (Polypodiaceae) comprises 42 species nested within the neotropical clade of the family together with genera such as Campyloneurum, Grammitis, Microgramma, Niphidium, Pleopeltis, Pecluma, Polypodium and Terpsichore. Although Serpocaulon is a well-supported genus, its intra-specific relationships are still not completely resolved. The morphological dataset for Serpocaulon and related genera is therefore expanded here with information on spore morphology to provide additional information for phylogenetic consideration. Spores have been collected from herbarium vouchers and acetolysed for light and scanning electron microscopy. All members of the neotropical clade have monolete spores, except for Grammitis and Terpsichore, which have trilete spores. Both verrucate and papillate ornamentation types are recognised. The palynological analysis shows close similarity between spores of Serpocaulon, Campyloneurum, Pleopeltis and Polypodium and supports close phylogenetic relationships between these taxa. Species of the grammitid clade, although nested within the Polypodiaceae, have spore morphology that supports a separate position.  相似文献   

19.
The formation of resting spores in diatoms is a common phenomenon in neritic environments. Here we report on resting spores of the genus Chaetoceros associated with a layer of increased chlorophyll fluorescence, at a depth of more than 200 m, north of Brabant Island and in Wilhelmina Bay, southeast coast of the Gerlache Strait (64°41.0′S, 62°0.5′W). Six species of Chaetoceros were identified by the morphology and size of the resting spores. Given that Chaetoceros spp., both in vegetative cells and as resting spores, are commonly found in Antarctic coastal surface waters, their location at depth could represent the pelagic “waiting” or “seeding” populations mentioned for other environments. Received: 25 November 1996 / Accepted: 16 November 1997  相似文献   

20.
Electron microscopy of haplosporidan spores from Teredo navalis and T. furcifera revealed 4 distinct membrane-bound extensions, 1 apical extension opposite the opercular hinge, 1 terminal and 2 opposing lateral extensions. These extensions were not continuous with the spore wall, but contained microtubule-like structures and degrading epispore cytoplasm. No other known species in the family Haplosporidiidae is characterized by spores possessing four epispore extensions. There are currently two genera in this family, Minchinia and Haplosporidium. The genus Minchinia includes spores such as those of M. chitonis which bear two epispore cytoplasm extensions. Spores of the genus Haplosporidium have been characterized by spore wall derived filaments. A 3rd group of haplosporidan species with spores ornamented by wrappings have traditionally also been assigned to the genus Haplosporidium. Based on the presence of epispore cytoplasm extensions rather than spore wall filaments, the haplosporidan of Teredo spp. can be placed in the genus Minchinia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号