首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ultrastructural observations on monoplastidic root tip cells ofIsoetes andSelaginella demonstrate two important phenomena associated with preprophasic preparation for mitotic cell division, 1. the preprophase band and 2. precise orientation of the dividing plastid relative to the preprophase band. Both of these phenomena accurately predict the future plane of cell division. The plastid divides in a plane parallel to the spindle and each cell inherits a single plastid which caps the telophase nucleus. When succesive transverse divisions occur, the plastid migrates prior to prophase from a position near an old transverse wall to a lateral position in the cell. The plastid is oriented with its median constriction precisely intersected by the plane of the preprophase band. When a longitudinal division follows a transverse division, the plastid remains in its position adjacent to an old transverse wall where it is bisected by the plane of the longitudinally oriented preprophase band microtubules.  相似文献   

2.
Dixit R  Cyr RJ 《Protoplasma》2002,219(1-2):116-121
Cell division involves the coordinated progression of karyokinesis and cytokinesis, which is accomplished by communication between the nucleus and the cytoplasm. We have utilized green-fluorescent-protein technology to generate a line of tobacco 'Bright Yellow 2' (BY-2) cells labeled for both microtubules and the nuclear envelope. This cell line allowed us to use living cells to investigate the relationship between nuclear-envelope breakdown and preprophase band disappearance with high spatial and temporal resolution. Our observations demonstrate that nuclear-envelope breakdown always precedes preprophase band disappearance in BY-2 cells. In addition, the rate of preprophase band disappearance, and the attenuation of perinuclear microtubule fluorescence, correlates with the proximity of the nucleus to the preprophase band site. These results indicate the presence of communication between the nucleus and the preprophase band and suggest a causal relationship between nuclear-envelope breakdown and preprophase band disappearance.  相似文献   

3.
Summary Mitotic cell division of monoplastidic sporogones was investigated in the mossTimmiella barbuloides (Brid.) Moenk. (Pottiales, Bryophyta) by TEM. Division polarity of sporogones is established by the interphase position of the single oblong cup-shaped plastid, which is orientated with its long axis parallel to one of the cell walls. In preprophase the plastid elongates and its extremities bend at right angles. Plastid growth is directed by microtubules and accompanied by plastid tubules. The plastid begins the process of duplication by constricting centrally in the plane of the future cytokinetic septum. There is no preprophase band of microtubules at the division site. The large central nucleus becomes fusiform and aligned parallel to the main plastid axis. By the end of prophase the daughter plastids are positioned at the opposite poles of the nucleus where they probably function as nucleating or organizing centres for the spindle microtubules. Metaphase and anaphase spindles contain long sheets of ER. Cytokinesis involves the formation of a well developed phragmoplast.Abbreviations TEM transmission electron microscopy - PPB preprophase band of microtubules - ER endoplasmic reticulum  相似文献   

4.
Y. Mineyuki  J. Marc  B. A. Palevitz 《Planta》1989,178(3):291-296
The organization of microtubule (MT) arrays in the guard mother cells (GMCs) of A. cepa was examined, focussing on the stage at which a longitudinal preprophase band (PPB) is established perpendicular to all other division planes in the epidermis. In the majority of young GMCs, including those seen just after asymmetric division, MTs are distributed randomly throughout the cortex and inner regions of the cytoplasm. Few MTs are associated with the nuclear surface. As the GMCs continue to develop, MTs cluster around the nucleus and a PPB appears as a wide longitudinal band. Microtubules also become prominent between the nucleus and the periclinal and transverse walls, while they decrease in number along the radial longitudinal walls. The PPB progressively narrows by early prophase, and a transversely oriented spindle gradually ensheaths the nucleus. These observations indicate that the initial, broad PPB is organized by a rearrangement of the random cytoplasmic array of MTs. Additional reorganization is responsible for MTs linking the nucleus and the cortex in the future plane of the cell plate, and for narrowing of the PPB.Abbreviations GMC guard mother cell - MT microtubule - PPB preprophase band  相似文献   

5.
A. L. Cleary 《Protoplasma》1995,185(3-4):152-165
Summary Microinjection of rhodamine-phalloidin into living cells of isolatedTradescantia leaf epidermis and visualisation by confocal microscopy has extended previous results on the distribution of actin in mitotic cells of higher plants and revealed new aspects of actin arrays in stomatal cells and their initials. Divisions in the stomatal guard mother cells and unspecialised epidermal cells are symmetrical. Asymmetrical divisions occur in guard mother precursor cells and subsidiary mother cells. Each asymmetrical division is preceded by migration of the nucleus and the subsequent accumulation of thick bundles of anticlinally oriented actin filaments localised to the area of the anticlinal wall closest to the polarised nucleus. During prophase, in all cell types, a subset of cortical actin filaments coaligns to form a band, which, like the preprophase band of microtubules, accurately delineates the site of insertion of the future cell wall. Following the breakdown of the nuclear envelope, F-actin in these bands disassembles but persists elsewhere in the cell cortex. Thus, cortical F-actin marks the division site throughout mitosis, firstly as an appropriately positioned band and then by its localised depletion from the same region of the cell cortex. This sequence has been detected in all classes of division inTradescantia leaf epidermis, irrespective of whether the division is asymmetrical or symmetrical, or whether the cell is vacuolate or densely cytoplasmic. Taken together with earlier observations on stamen hair cells and root tip cells it may therefore be a general cytoskeletal feature of division in cells of higher plants.Abbreviations GMC guard mother cell - MT microtubule - PPB preprophase band - Rh rhodamine - SMC subsidiary mother cell  相似文献   

6.
Actin in the preprophase band of Allium cepa   总被引:7,自引:3,他引:4       下载免费PDF全文
F-actin has been identified in the preprophase band of Allium cepa. Cells attached to subbed slides were obtained from formaldehyde-fixed root tips digested in EGTA and Cellulysin. The air-dried cells were extracted in Triton X-100, treated with rhodamine-phalloidin, rinsed briefly in PBS, and viewed in the fluorescence microscope. Interphase cells contain a network of actin fibers that extends into all areas of the cytoplasm. During preprophase, the network is replaced by a band of fibers aligned in the position of the preprophase band. Colocalization of F-actin with rhodamine-phalloidin and microtubules with tubulin immunocytochemistry confirms that the two bands are coincident. The actin appears to comprise a thin layer of fibers next to the plasmalemma. Like the microtubule preprophase band, the actin band narrows as preprophase progresses and disappears by midprophase. Fluorescent actin bands are not seen in fixed cells pretreated with excess unlabeled phalloidin before staining. They are also absent in roots exposed to cytochalasins B and D before fixation, but preprophase band microtubules at all stages of aggregation are still present. Colchicine treatment leads to the loss of both preprophase band microtubules and actin. The possible function of preprophase band actin is discussed.  相似文献   

7.
The ultrastructural aspects of the cell division in the grapevine(Vitis riparia × V.labrusca) calli were studied. A large central vacuole plays a noticeable part in this process. Before its division the nucleus with some encircling cytosol moves into the central vacuole where the small, round-shaped portion of cytosol (phragmosome) originates. In this central mass of cytosol connected with the peripheral one by thin cytosolic strands karyokinesis is carried out and the cell plate formation starts. Before karyokinesis the phragmosome, however, does not exhibit the form of the cytosolic layer completely traversing the cell. No preprophase band of microtubules has been observed in the cells either. The polarity of the mitotic spindle designating the orientation of the new cell wall is random then and it is not determined by the position of the preprophase band of microtubules or by the orientation of phragmosome. The unorganized growth of the grapevine callus reflects this fact.  相似文献   

8.
Summary Preprophase in the monoplastidic mitotic cells ofPhaeoceros andNotothylas is characterized by the establishment of a division site in the absence of a typical preprophase band. The future cytokinetic plane is predicted by plastid orientation and development of an elaborate preprophasic microtubule system perpendicular to the division plane. Division of the single plastid is initiated early in preprophase and the constricting plastid migrates to a position perpendicular to the future plane of division. Plastid orientation assures that division of the plastid by mid-constriction will result in distribution of a plastid to each daughter cell. Microtubules parallel the long axis of the plastid and are most numerous adjacent to the nucleus which becomes elongated in the future spindle axis. We conclude that the division site is a fundamental component of the cytokinetic apparatus involved in the determination of cleavage plane prior to nuclear division.  相似文献   

9.
E. P. Eleftheriou 《Planta》1985,163(2):175-182
Root tip procambial cells of Triticum speltoides, T. tauschii, T. turgidum and T. aestivum have been investigated ultrastructurally for the detection of preprophase microtubule bands (PMBs) and to estimate the number of microtubules comprising the bands. The species selected are phylogenetically related but differ in the ploidy level. It was found that all species develop well-defined PMBs prior to mitosis. Estimations of microtubule abundance in the PMBs was carried out in midpreprophase cells, a stage judged by a feature of the nucleus in which electron-transparent canals are formed around the initial condensations of the chromatin material and the nucleoli. Triticum speltoides bears the smaller average number of microtubules per PMB and T. aestivum the greater. The results indicate that the increase follows the upgrade of the number of chromosome sets. It is suggested that the average number of microtubules of PMBs is related to the ploidy level.Abbreviation PMB preprophase microtubule band  相似文献   

10.
Summary The interphase nucleus in theFunaria caulonema tip cells is associated with many non-cortical microtubules (Mts). In prophase, the cortical Mts disappear in the nuclear region; in contrast to moss leaflets, a preprophase band of Mts is not formed in the caulonema. The Mts of the early spindle are associated with the fragments of the nuclear envelope. Remnants of the nucleolus remain in the form of granular bodies till interphase. The metaphase chromosomes have distinct kinetochores; the kinetochore Mts are intermingled with non-kinetochore Mts running closely along the chromatin. Each kinetochore is associated with an ER cisterna. ER cisternae also accompany the spindle fibers in metaphase and anaphase. In telophase, Golgi vesicles accumulate in the periphery of the developing cell plate where no Mts are found. The reorientation of the cell plate into an oblique position can be inhibited by colchicine. It is concluded that the ER participates in controlling the Mt system, perhaps via calcium ions (membrane-bound calcium ions have been visualized by staining with chlorotetracycline) but that, on the other hand, the Mt system also influences the distribution of the ER. The occurrence and function of the preprophase band of Mts is discussed.  相似文献   

11.
The preprophase band predicts the future cell division site. However, the mechanism of how a transient preprophase band fulfils this function is unknown. We have investigated the possibility that Golgi secretion might be involved in marking the preprophase band site. Observations on living BY-2 cells labeled for microtubules and Golgi stacks indicated an increased Golgi stack frequency at the preprophase band site. However, inhibition of Golgi secretion by brefeldin A during preprophase band formation did not prevent accurate phragmoplast fusion, and subsequent cell plate formation, at the preprophase band site. The results show that Golgi secretion does not mark the preprophase band site and thus does not play an active role in determination of the cell division site.  相似文献   

12.
Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.Abbreviations AMS axial microtubule system - CLSM confocal laser scanning microscopy - MTOC microtubule organizing center - PO polar organizer - PPB preprophase band of microtubules - QMS quadripolar microtubule system - TEM transmission electron microscopy  相似文献   

13.
Summary Changes in the actin filament and microtubule cytoskeleton were examined during heat- and cytochalasin D-induced embryogenesis in microspores ofBrassica napus cv. Topas by rhodamine phalloidin and immunofluorescence labelling respectively. The nucleus was displaced from its peripheral to a more central position in the cell, and perinuclear actin microfilaments and microtubules extended onto the cytoplasm. Heat treatment induced the formation of a preprophase band of microtubules in microspores; preprophase bands are not associated with the first pollen mitosis. Actin filament association with the preprophase band was not observed. The orientation and position of the mitotic spindle were altered, and it was surrounded with randomly oriented microfilaments. The phragmoplast contained microfilaments and microtubules, as in pollen mitosis I, but it assumed a more central position. Cytoskeletal reorganisation also occurred in microspores subjected to a short cytochalasin D treatment, in the absence of a heat treatment. Cytochalasin D treatment of microspores resulted in dislocated mitotic spindles, disrupted phragmoplasts, and symmetric divisions and led to embryogenesis, confirming that a normal actin cytoskeleton has a role in preventing the induction of embryogenesis.Abbreviations CD cytochalasin D - MF actin microfilament - MT microtubule - PPB preprophase band  相似文献   

14.
Stomatal development was studied in wild-type Arabidopsis leaves using light and electron microscopy. Development involves three successive types of stomatal precursor cells: meristemoid mother cells, meristemoids, and guard mother cells (GMCs). The first two types divide asymmetrically, whereas GMCs divide symmetrically. Analysis of cell wall patterns indicates that meristemoids can divide asymmetrically a variable number of times. Before meristemoid division, the nucleus and a preprophase band of microtubules become located on one side of the cell, and the vacuole on the other. Meristemoids are often triangular in shape and have evenly thickened walls. GMCs can be detected by their roughly oval shape, increased starch accumulation, and wall thickenings on opposite ends of the cells. Because these features are also found in developing stomata, stomatal differentiation begins in GMCs. The wall thickenings mark the division site in the GMC since they overlie a preprophase band of microtubules and occur where the cell plate fuses with the parent cell wall. Stomatal differentiation in Arabidopsis resembles that of other genera with kidney-shaped guard cells. This identification of stages in stomatal development in wild-type Arabidopsis provides a foundation for the analysis of relevant genes and of mutants defective in stomatal patterning, cell specification, and differentiation.  相似文献   

15.
Summary In order to study developmental changes in microtubule organization attending the formation of a longitudinally oriented preprophase band, the guard mother cells ofAvena were examined using a new procedure for anti-tubulin immunocytochemistry on large epidermal segments. We found that the interphase band (IMB) of transverse cortical microtubules present in these cells following asymmetric division is replaced after subsidiary cell formation by mesh-like to radial microtubules that extend throughout the cytoplasm. Many of the Mts are also grouped in bundles. Gradually, this intermediate array is succeeded by longitudinal elements of the PPB. Thus, preprophase band formation is accompanied by a 90° shift in Mt orientation, with a radial arrangement serving as an intermediate stage. The micrographs are most consistent with the rearrangement of intact Mts, although changes in Mt assembly are possible as well. The role of the IMB in guard mother cells is also discussed.Abbreviations GMC guard mother cell - IMB interphase microtubule band - Mt microtubule - PPB preprophase band  相似文献   

16.
Summary To examine whether preprophase microtubule band (PPB) organization occurs by rearrangement of pre-existing, or by assembly of new microtubules (Mts), we treated root cells ofTriticum turgidum with taxol, which stabilizes pre-existing Mts by slowing their depolymerization. With taxol early preprophase cells failed to form a normal PPB and PPB narrowing was prevented in cells that had already formed a wide one. The PPB became persistent in prometaphase cells and the formation of multipolar prophase-prometaphase spindles was induced. These data favour the suggestion that PPB formation and narrowing, as well as prophase spindle development, are dynamic processes depending on continuous Mt assembly at the PPB site and in the perinuclear cytoplasm.Abbreviations Mt microtubule - MTOC microtubule organizing centre - PPB preprophase microtubule band - DMSO dimethyl sulfoxide  相似文献   

17.
Summary This work examines mitosis in root-tip cells ofTriticum turgidum treated with the RNA synthesis inhibitor ethidium bromide, using tubulin immunolabeling and electron microscopy. The following aberrations were observed in ethidium bromideaffected cells: (1) incomplete chromatin condensation and nuclear-envelope breakdown; (2) delay of preprophase microtubule band maturation; (3) preprophase microtubule band assembly in cells displaying an interphase appearance of the nucleus; (4) prevention of the prophase spindle formation, caused by inhibition of perinuclear microtubule (Mt) formation and/or inability of the perinuclear Mts to assume bipolarity; (5) organization of an atypical metaphase spindle which is unable to arrange the chromosomes on the equatorial plane; (6) formation of an atypical perinuclear metaphase spindle in cells in which nuclear-envelope breakdown has been almost completely inhibited; (7) inhibition of the anaphase spindle formation as well as of anaphase chromosome movement; (8) disorganization of the atypical mitotic spindle during transition from mitosis to cytokinesis. The observations favor the following hypotheses. Nucleation of prophase spindle Mts is related to the mechanism that causes nuclear-envelope breakdown. The mitotic poles lack Mtnucleating and -organizing properties, and their function does not account for prophase and metaphase spindle assembly. The organization of the prophase spindle is not a prerequisite for the formation of the metaphase spindle; the metaphase spindle seems to be formed de novo by Mts nucleated on the nuclear envelope and/or in the immediate vicinity of chromosomes.Abbreviations 5-AU 5-aminouracil - EB ethidium bromide - EM electron microscopy - k-Mt kinetochore microtubule - Mt microtubule - MTOC microtubule-organizing center - NE nuclear envelope - NEB nuclear-envelope breakdown - PPB preprophase band of microtubules  相似文献   

18.
T. Murata  M. Wada 《Protoplasma》1989,151(2-3):73-80
Summary Microtubule organization during preprophase band development was investigated using immunofluorescence microscopy in filamentous protonemal cells (approx. 600 m in length, 20 m in width) ofAdiantum capillus-veneris L. Protonemata pre-cultured under red light were transferred to continuous blue light or total darkness to induce synchronous cell division. Preprophase bands were found under both light conditions. In an early stage of development, the preprophase band which is transverse to the cell axis overlapped with an interphase cortical array of microtubules which is random or parallel to the cell axis. The interphase cortical array disappeared thereafter. While the width of the preprophase band became narrow during development under dark conditions, under blue light conditions it did not.Spatial and temporal aspects of the disappearance of the interphase cortical array of microtubules were also investigated. The interphase cortical array began to disappear at nearly the same time as the beginning of preprophase band formation. Under blue light, the disruption of cortical microtubules started at approx. 150 m from the tip (approx. 120 m from the nucleus), and spread toward the tip as far as the nuclear region and toward the base to an area approx. 300–400 m from the tip. Cortical microtubules remained in the basal part of the protonema. The pattern of disappearance between the tip and nucleus could not be determined. Under dark conditions, the pattern of the disappearance of cortical microtubules was somewhat different in many cells from that encountered with exposure to blue light. Microtubules first re-oriented from longitudinal to transverse, and then gradually disappeared. In some cells, the pattern of disappearance was similar to that observed under blue light.Abbreviations DAPI 4, 6-diamidino-2-phenylindole - ICM interphase cortical microtubules - PBS phosphate buffered saline - PPB preprophase band - MT microtubule  相似文献   

19.
 To understand the role of microtubules in the regulation of cell elongation, we characterized microtubule patterns in fass, a cell shape mutant of Arabidopsis thaliana (L.) Heynh. Examining microtubule patterns via immunocytochemistry, we found that fass cells were able to organize their microtubules into mitotic spindles and phragmoplasts. During interphase or preprophase, fass cells had cortical microtubules, verified by transmission electron microscopy, but these microtubules were not organized into the cortical array or preprophase band. Using chromatin condensation and tubulin localization on the nuclear envelope as preprophase stage markers, we found that although fass cells lacked the preprophase band and cortical array, their cell division cycle appeared normal. To pinpoint the defect in fass cells, we delineated the sequential events leading to cortical array formation in Arabidopsis cells and found that fass cells initiated and recolonized cortical microtubules in the same manner as wild-type cells, but failed to order them into the cortical array. Taken together, these results suggest fass cells are impaired in a component of the microtubule organizing center(s) required for the proper ordering of cortical microtubules at the plasma membrane. Received: 23 August 1996 / Accepted: 25 September 1996  相似文献   

20.
The regulation of mitosis in higher plant cells has been investigated by microinjecting protein kinase from the metaphase-arresting (met1) mutant ofChlamydomonas. Biochemical characterization of this enzyme complex confirms the presence of a p34cdc2/cyclin B-like kinase. The enzyme was injected into living stamen hair cells ofTradescantia virginianain which microtubules (MTs) were visualized using fluorescent analogue cytochemistry and confocal laser scanning microscopy. Microinjection of this p34cdc2/cyclin B-like kinase caused rapid disassembly of the preprophase band of MTs but not of interphase-cortical, spindle or phragmoplast MTs. Effects of the enzyme on the cytomorphology of live prophase cells were also monitored using video microscopy. We found that injection of this enzyme accelerated chromatin condensation and nuclear envelope breakdown. This indicates the presence and function in plants of an enzyme that can initiate nuclear division similar to the maturation or mitosis promoting factor (MPF) of animal cells. These studies provide the first direct evidence that the mitotically-active form of plant MPF can drive disassembly of preprophase band MTs, chromosome condensation and initiation of mitosis in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号