首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.  相似文献   

2.
3.
Oocyte maturation is finally triggered by the maturation-promoting factor (MPF), which consists of Cdc2 and cyclin B. We have cloned cDNAs encoding frog (Rana japonica) cyclins B1 and B2 and produced antibodies against their products. Using the antibodies, we investigated changes in protein states and levels of Cdc2 and cyclins B1 and B2 during oocyte maturation. In immature oocytes, all Cdc2 was a monomeric unphosphorylated inactive 35 kDa form and neither cyclin B1 nor cyclin B2 was present. Mature oocytes contained the MPF complex consisting of an active 34 kDa Cdc2 phosphorylated on threonine161 and a 49 kDa cyclin B1 or a 51 kDa cyclin B2. After progesterone stimulation, both cyclins B1 and B2 were synthesized from their stored mRNAs and bound to the preexisting 35 kDa Cdc2. The binding of Cdc2 with cyclin B and its activation probably through the phosphorylation on threonine161 occurred at almost the same time, in accordance with an electrophoretic mobility shift of Cdc2 from 35 to 34 kDa. Microinjection into immature oocytes of cyclin B1 or B2 mRNA alone, or a mixture of them, induced germinal vesicle breakdown (GVBD) with similar dose-dependence. When the translation of endogenous mRNAs of both cyclins B1 and B2 was inhibited with antisense RNAs, progesterone failed to induce GVBD in the oocytes, but the inhibition of only one of the two was unable to inhibit the progesterone-induced GVBD. These results indicate that either cyclin B1 or B2 is necessary and sufficient for inducing GVBD during Rana oocyte maturation. Mol. Reprod. Dev. 50:499–509, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Using a polyclonal antibody raised against B2 cyclin from Xenopus laevis, we show that prophase-arrested Xenopus oocytes contain a stockpile of cyclin B2 protein. During progesterone-induced maturation, an increase in the synthesis of cyclin B2 is observed, although Western blotting experiments show that this new synthesis does not significantly increase the mass of cyclin over the maternal stockpile. In the oocyte cyclin B2 is already present in two forms which differ in the extent of phosphorylation, but the phosphorylated form becomes predominant as oocytes progress towards germinal vesicle breakdown (GVBD), coincident with cdc2 protein kinase activation. These two events do not depend upon formation of a new complex between cyclin and cdc2 protein kinase, since these two proteins are already found associated in resting oocytes, prior to activation of the kinase.  相似文献   

5.
In Xenopus oocytes, metaphase II arrest is due to a cytostatic factor (CSF) that involves c-Mos, maintaining a high MPF (cdk1/cyclin B) activity in the cell. At fertilization, a rise in intracellular calcium triggers the proteolysis of both cyclin B and c-Mos. The kinase inhibitor 6-dimethylaminopurine (6-DMAP) is also able to release matured Xenopus oocytes from metaphase II block. This is characterized by c-Mos proteolysis without degradation of cyclin B. We hypothesized that 6-DMAP induced an increase in intracellular calcium. Using the calcium-sensitive fluorescent dye Fura-2, we observed a systematic increase in intracellular calcium following 6-DMAP application. In matured oocytes previously microinjected with the calcium chelator BAPTA, no calcium changes occurred after 6-DMAP addition; however, c-Mos was still proteolysed. In oocytes at the GVBD stage, c-Mos proteolysis occurred in response to 6-DMAP but not to calcium ionophore treatment. We suggest that c-Mos proteolysis is rather controlled by a phosphorylation-dependent process.  相似文献   

6.
7.
Maturation-promoting factor, consisting of cdc2 protein kinase and a regulatory B-type cyclin, is a universal regulator of meiosis and mitosis in eukaryotes. In Xenopus, there are two subtypes of B-type cyclins, designated B1 and B2, both of which are phosphorylated. In this study, we have investigated the biological significance of this phosphorylation for Xenopus cyclin B1 during meiotic maturation. We have used a combination of site-directed mutagenesis and phosphopeptide-mapping to identify serine residues 2, 94, 96, 101, and 113 as presumptive phosphorylation sites, and together these sites account for all cyclin B1 phosphorylation in oocytes before germinal vesicle breakdown (GVBD). Single Ser-->Ala mutants as well as multiple site mutants have been constructed and characterized. Phosphorylation of cyclin B1 appears to be required for Xenopus oocyte maturation, based on the significantly diminished ability of the quintuple Ala mutant to induce oocyte maturation. Furthermore, partial phosphorylation of these five sites is sufficient to meet this requirement. Phosphorylation of cyclin B1 is not required for cdc2 kinase activity, for binding to cdc2 protein, for stability of cyclin B1 before GVBD, or for destruction of cyclin B1 after GVBD or after egg activation. A quintuple Glu mutant was also constructed, with serine residues 2, 94, 96, 101, and 113 mutated to Glu. In contrast to the quintuple Ala mutant, the quintuple Glu mutant was able to induce oocyte maturation efficiently, and with more rapid kinetics than wild-type cyclin B1. These data confirm that phosphorylation, as mimicked by Ser-->Glu mutations, confers enhanced biological activity to cyclin B1. Possible roles of cyclin B1 phosphorylation are discussed that might account for the increased biological activity of the quintuple Glu mutant.  相似文献   

8.
Maturing amphibian oocytes undergo drastic morphological changes, including germinal vesicle breakdown (GVBD), chromosome condensation, and spindle formation in response to progesterone. Two kinases, maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), are involved in these changes, but their precise roles are unknown. Unlike in Xenopus oocytes, discrimination of the functions of MAPK and MPF in Rana oocytes is easy owing to the lack of pre-MPF. We investigated the roles of these kinases by careful observations of chromosomes and microtubules in Rana oocytes. MPF and MAPK activities were manipulated by treatment with progesterone, c-mos mRNA, or cyclin B mRNA in combination with MAPK kinase inhibitors. Activation of one kinase without activation of the other induced only limited events; GVBD was induced by MPF without MAPK, and reorganization of microtubules at GVBD was induced by MAPK without MPF, but other events were not induced. In contrast, coactivation of MPF and MAPK by injection of c-mos and cyclin B mRNA promoted almost all of the morphological changes that occur during maturation without progesterone, indicating that these are controlled by cooperation of MPF and MAPK. The results revealed the functions of MAPK and MPF in each process of sequential morphological changes during oocyte maturation.  相似文献   

9.
Han D  Liu XY  Jiao GZ  Liang B  He N  Gao WQ  Tan JH 《Theriogenology》2012,77(9):1900-1910
Cyclin B1 turnover and the insensitivity of fully-grown mouse oocytes to cycloheximide (CHX) inhibition of germinal vesicle breakdown (GVBD) were examined by assaying GVBD and cyclin B1 levels after treatment of oocytes with various combinations of eCG and CHX. Whereas over 95% of oocytes underwent GVBD after culture for 24 h with CHX alone, only 10% did so after culture with CHX + eCG (P < 0.05). In addition, preculture with eCG alone had no effect, but preculture with eCG + CHX prevented GVBD during a second culture with CHX alone. Therefore, we inferred that eCG delayed GVBD long enough for CHX inhibition of protein synthesis to allow cyclin B1 to decrease below a threshold where GVBD became dependent upon its de novo synthesis. However, western blot revealed no cyclin B1 synthesis, but cyclin B1 degradation, as long as GVs were maintained intact with eCG. Regarding the function of CHX in preculture without protein synthesis to block subsequent GVBD, whereas eCG delayed GVBD for only 3 h, CHX had an ongoing effect that further postponed GVBD, thus allowing cyclin B1 to decrease below the threshold. When oocytes precultured with eCG + CHX were further cultured without eCG and CHX, cyclin B1 first decreased but then, because of the ongoing effects of CHX, increased to a level sufficient to induce GVBD. The content of P34Cdc2 was not altered under any of the culture conditions (P > 0.05). We concluded that insensitivity of mouse germinal vesicle (GV) oocytes to CHX was due to the presence of sufficient cyclin B1, and that cyclin B1 level in such oocytes was maintained by an equilibrium between synthesis and degradation.  相似文献   

10.
Porcine immature oocytes require protein synthesis for meiotic resumption, thus the importance of Cdc2 inhibitory phosphorylation in their meiotic arrest remains controversial. We examined the involvement of Cdc2 phosphorylation in the meiotic arrest of porcine oocytes with a special focus on Wee1B, an oocyte-specific Wee1 family member recently reported in mouse oocytes. We cloned a Wee1B homologue of pig by RT-PCR followed by 5’- and 3’-RACE. Overexpression of pigWee1B in porcine immature oocytes by the injection of pigWee1B mRNA almost completely blocked the germinal vesicle breakdown (GVBD) under the low cAMP concentration, which could not block their spontaneous meiotic resumption by itself. The MPF activation and cyclin B synthesis were inhibited in these oocytes. Conversely, downregulation of pigWee1B expression by the injection of specific antisense mRNA induced GVBD in the oocytes, the spontaneous meiotic resumption of which was blocked by the high concentration of cAMP (dbcAMP). In these oocytes, the MPF activity was elevated and cyclin B was accumulated. Downregulation of pigMyt1, another Wee1 family member, could not induce the GVBD under the same condition. The inhibition of tyrosine phosphatase by vanadate blocked the GVBD even in the pigWee1B-downregulated oocytes. These results suggest that the inhibitory phosphorylation of CDC2, which is catalyzed by pigWee1B, but not pigMyt1, is involved in the meiotic arrest of porcine oocytes, and that the inactivation of Wee1B in combination with the phosphatase activation induces the conversion of pre-MPF to the active MPF and starts the cyclin B synthesis, follwed by a further increase of MPF and meiotic resumption.  相似文献   

11.
Fully grown Xenopus oocytes are physiologically arrested at the G2/prophase border of the first meiotic division. Addition in vitro of progesterone or insulin causes release of the G2/prophase block and stimulates meiotic cell division of the oocyte, leading to maturation of the oocyte into an unfertilized egg. The possibility that the products of polyphosphoinositide breakdown, diacylglycerol and inositol-1,4,5-trisphosphate (IP3-, are involved in oocyte maturation was investigated. Microinjection of IP3 into oocytes just prior to addition of progesterone or insulin accelerated the rate of germinal vesicle breakdown (GVBD) by up to 25%. Half-maximal acceleration occurred at an intracellular IP3 concentration of 1 microM. Treatment of oocytes with the diacylglycerol analog and tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced GVBD in the absence of hormone. Half-maximal induction of GVBD occurred with 150 nM TPA and was blocked by pretreatment of oocytes with 10 nM cholera toxin. Microinjection of highly purified protein kinase C from rat brain into oocytes did not induce maturation but markedly accelerated the rate of insulin-induced oocyte maturation. However, injection of the enzyme had no effect on progesterone action. In oocytes with a basal intracellular pH below 7.6, TPA increased intracellular pH, but GVBD occurred with TPA in Na-substituted medium. Neomycin, a putative inhibitor of polyphosphoinositide breakdown, reversibly inhibited insulin- but not progesterone-induced maturation. Half-maximal inhibition occurred at 1.6 mM neomycin. These results indicate that protein kinase C is capable of regulating oocyte maturation in Xenopus.  相似文献   

12.
Xenopus Aurora-A (also known as Eg2) is a member of the Aurora family of mitotic serine/threonine kinases. In Xenopus oocytes, Aurora-A phosphorylates and activates a cytoplasmic mRNA polyadenylation factor (CPEB) and therefore plays a pivotal role in MOS translation. However, hyperphosphorylation and activation of Aurora-A appear to be dependent on maturation-promoting factor (MPF) activation. To resolve this apparent paradox, we generated a constitutively activated Aurora-A by engineering a myristylation signal at its N terminus. Injection of Myr-Aurora-A mRNA induced germinal vesicle breakdown (GVBD) with the concomitant activation of MOS, mitogen-activated protein kinase, and MPF. Myr-Aurora-A-injected oocytes, however, appeared to arrest in meiosis I with high MPF activity and highly condensed, metaphase-like chromosomes but no organized microtubule spindles. No degradation of CPEB or cyclin B2 was observed following GVBD in Myr-Aurora-A-injected oocytes. In the presence of progesterone, the endogenous Aurora-A became hyperphosphorylated and activated at the time of MPF activation. Following GVBD, Aurora-A was gradually dephosphorylated and inactivated before it was hyperphosphorylated and activated again. This biphasic pattern of Aurora-A activation mirrored that of MPF activation and hence may explain meiosis I arrest by the constitutively activated Myr-Aurora-A.  相似文献   

13.
Cyclin B, the regulatory subunit of maturation-promoting factor (MPF), comprises several subtypes that are presumed to confer different functions on MPF although no direct evidence has been provided to date. To clarify the difference in the roles of cyclins B1 and B2, we used frog (Rana japonica) oocytes in which MPF is formed only after progesterone stimulation because it is possible to produce oocytes containing either cyclin B1-MPF or cyclin B2-MPF by antisense RNA-mediated translational inhibition of each mRNA. Using this advantage, we investigated the functions of cyclins B1 and B2 and obtained the following results: (a) oocytes synthesizing cyclin B2-MPF underwent meiosis I and II with formation of a bipolar spindle at each metaphase; (b) oocytes synthesizing cyclin B1-MPF formed a monopolar spindle at metaphase I and extruded an abnormal polar body; and (c) both oocytes underwent germinal vesicle breakdown (GVBD) and chromosome condensation. Immunocytochemical observations also revealed continuous localization of cyclin B2 on the spindle during meiosis. These results provide evidence of the requirement of cyclin B2, but not cyclin B1, for organizing the bipolar spindle, though either cyclin B1 or B2 is redundant for inducing GVBD and chromosome condensation.  相似文献   

14.
We have measured the levels of cyclin mRNAs and polypeptides during oogenesis, progesterone-induced oocyte maturation, and immediately after egg activation in the frog, Xenopus laevis. The mRNA for each cyclin is present at a constant level of approximately 5 x 10(7) molecules per oocyte from the earliest stages of oogenesis until after fertilization. The levels of polypeptides show more complex patterns of accumulation. The B-type cyclins are first detectable in stage IV and V oocytes. Cyclin B2 polypeptide is present at approximately 2 x 10(9) molecules (150 pg) per oocyte by stage VI. The amount increases after progesterone treatment, but returns to its previous level after GVBD and undergoes no further change until it is destroyed at fertilization. Cyclin B1 is present at 4 x 10(8) molecules per oocyte in stage VI oocytes, and rises steadily during maturation, ultimately reaching similar levels to cyclin B2 in unfertilized eggs. Unlike the B-type cyclins, cyclin A is barely detectable in stage VI oocytes, and only starts to be made in significant amounts after oocytes are exposed to progesterone. A portion of all the cyclins are destroyed after germinal vesicle breakdown (GVBD), and cyclins B1 and B2 also experience posttranslational modifications during oocyte maturation. Progesterone strongly stimulates both cyclin and p34cdc2 synthesis in these oocytes, but whereas cyclin synthesis continues in eggs and after fertilization, synthesis of p34cdc2 declines strongly after GVBD. The significance of these results is discussed in terms of the activation and inactivation of maturation-promoting factor.  相似文献   

15.
Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34(cdc2) could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34(cdc2), and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor-induced feedback. We report here that the cdk inhibitor p21(cip1), when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21(cip1), progesterone fails to induce the activation of MAPK or p34(cdc2), and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.  相似文献   

16.
The kinase responsible for Thr161-Thr160 phosphorylation and activation of cdc2/cdk2 (CAK:cdk-activating kinase) has been shown previously to comprise at least two subunits, cdk7 and cyclin H. An additional protein co-purified with CAK in starfish oocytes, but its sequencing did not reveal any similarity with any known protein. In the present work, a cDNA encoding this protein is cloned and sequenced in both starfish and Xenopus oocytes. It is shown to encode a new member of the RING finger family of proteins with a characteristic C3HC4 motif located in the N-terminal domain. We demonstrate that the RING finger protein (MAT1: 'menage à trois') is a new subunit of CAK in both vertebrate and invertebrates. However, CAK may also exist in oocytes as heterodimeric complexes between cyclin H and cdk7 only. Stable heterotrimeric CAK complexes were generated in reticulocyte lysates programmed with mRNAs encoding Xenopus cdk7, cyclin H and MAT1. In contrast, no heterodimeric cyclin H-cdk7 complex could be immunoprecipitated from reticulocyte lysates programmed with cdk7 and cyclin H mRNAs only. Stabilization of CAK complexes by MAT1 does not involve phosphorylation of Thr176, as the Thr176-->Ala mutant of Xenopus cdk7 could engage as efficiently as wild-type cdk7 in ternary complexes. Even though starfish MAT1 is almost identical to Xenopus MAT1 in the RING finger domain, the starfish subunit could not replace the Xenopus subunit and stabilize cyclin H-cdk7 in reticulocyte lysate, suggesting that the MAT1 subunit does not (or not only) interact with cyclin H-cdk7 through the RING finger domain.  相似文献   

17.
Cyclin B mRNA stored in immature zebrafish oocytes is translationally activated upon the stimulation of 17alpha,20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-DP), an event prerequisite for initiating oocyte maturation in this species. We investigated localization of cyclin B mRNA in zebrafish oocytes. Cyclin B mRNA was found to be exclusively localized as an aggregation along the cytoplasm at the animal pole of full-grown immature oocytes. When oocytes were treated with 17alpha,20beta-DP, a meshwork of microfilaments in the oocyte cortex disappeared and the aggregation of cyclin B mRNA dispersed just prior to the initiation of cyclin B synthesis and germinal vesicle breakdown (GVBD). Cytochalasin B, but not nocodazole or taxol, deformed the aggregation of cyclin B mRNA, indicating the involvement of microfilaments in organizing this form. Like 17alpha,20beta-DP, cytochalasin B (10 microg/ml) induced both complete dispersion of the aggregation and translational activation of cyclin B mRNA, forcing the oocytes to undergo GVBD without 17alpha,20beta-DP. Conversely, disturbance of the aggregation of cyclin B mRNA with a low concentration (1 microg/ml) of cytochalasin B inhibited 17alpha,20beta-DP-induced GVBD. These results suggest that the direct change in cyclin B mRNA from the aggregated form to the dispersed form is responsible for translational activation of the mRNA during zebrafish oocyte maturation.  相似文献   

18.
Efforts to improve the quality of in vitro matured oocytes by blocking germinal vesicle breakdown (GVBD) and allowing more time for ooplasmic maturation have achieved little due to a lack of knowledge on the molecular events during GVBD blocking. Such knowledge is also important for studies aimed at regulating gene expression in maturing oocytes prior to GVBD. We studied species difference and signaling pathways leading to the carrying-over effect of GVBD blocking on post-blocking meiotic progression (PBMP). Overall, GVBD-blocking with roscovitine decelerated PBMP of mouse oocytes but accelerated that of pig oocytes. During blocking culture, whereas cyclin B of pig oocytes increased continuously, that of mouse oocytes declined first and then increased slowly. In both species, (a) whereas active CDC2A showed a dynamics similar to cyclin B, inactive CDC2A decreased continuously; (b) when oocytes were blocked in blocking medium containing cycloheximide, PBMP was decelerated significantly while cyclin B and active CDC2A decreasing to the lowest level; (c) whereas sodium vanadate in blocking medium reduced PBMP, epidermal growth factor (EGF) in blocking medium accelerated PBMP significantly with no effect on cyclin B levels. In conclusion, the EGF signaling cascade accelerated PBMP by promoting the pre-MPF (M-phase-promoting factor) to MPF conversion during GVBD blocking with roscovitine. The significant difference in PBMP observed between mouse and pig oocytes was caused by species difference in cyclin B dynamics during blocking culture as no species difference was observed in either pre-MPF to MPF conversion or the EGF signaling activity.  相似文献   

19.
Previously, it has been shown that oocytes of marine nemertean worms resume meiosis and undergo germinal vesicle breakdown (GVBD) following treatment with either natural seawater (NSW), or the neurohormone serotonin (5-hydroxytryptamine or 5-HT). In this investigation of the nemerteans Cerebratulus lacteus and Cerebratulus sp., immunoblots and kinase assays were used to compare the roles of two regulatory kinases: mitogen-activated protein kinase (MAPK) and Cdc2/cyclin B (referred to as maturation promoting factor or MPF). Based on such analyses, an ERK (extracellular signal regulated kinase) type of MAPK was found to be activated concurrently with Cdc2/cyclin B during NSW- and 5-HT-induced maturation. MAPK activation occurred prior to GVBD and seemed to be controlled primarily by phosphorylation rather than de novo protein synthesis. Inhibition of MAPK signaling by U0126 was capable of delaying but not permanently blocking Cdc2/cyclin B activation and GVBD in 5-HT treated oocytes and subsets of NSW-treated oocytes. Collectively such data indicated that GVBD is not fully dependent on MAPK activation, since Cdc2/cyclin B can apparently be activated by MAPK-independent mechanism(s) in maturing nemertean oocytes.  相似文献   

20.
The G2 to M phase transition in perch oocytes is regulated by maturation promoting factor (MPF), a complex of Cdc2 and cyclin B. In Anabas testudineus, a fresh water perch, 17 alpha,20 beta-dihydroxy-4-pregnen-3-one, the maturation inducing hormone (MIH), induced complete germinal vesicle breakdown (GVBD) of oocytes at 21 h. An unusual cyclin, p30 cyclin B, has been identified in oocyte extract using both monoclonal and polyclonal antibodies. Surprisingly, Cdc2 could not be identified, although a Northern blot with Cdc2 cDNA demonstrated expression of the gene. Purification of MPF through an immunoaffinity column followed by SDS-PAGE showed three proteins, Cdc2, cyclin B, and a 20 kDa fragment, indicating earlier failure in immunodetection may be due to the interference by this fragment. In uninduced oocytes, p30 cyclin B was present, and its expression was increased by MIH. MIH increased p30 cyclin B accumulation at 3 h, a high level which was maintained between 9 and 21 h, but an effective increase in GVBD and H1 kinase activation could only be observed between 15 and 21 h. This delay in active MPF formation was found to be related to the activation of Cdc25, phosphorylation of which was detected at 12 h, and a substantial increase occurred during 15-18 h. Sodium orthovanadate, a tyrosine phosphatase inhibitor, inhibited H1 kinase activity and GVBD, suggesting the requirement of Cdc25 activity in MPF activation. Our results show occurrence of pre-MPF in uninduced oocytes and its conversion to active MPF requires dephosphorylation by Cdc25, the existence of which has not yet been shown in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号