首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to clarify the relationship between meiotic pairing and recombination, and electron microscopic (EM) study of synaptonemal complexes (SC) and an analysis of chiasma frequency and distribution were made in male mice singly and doubly heterozygous for Robertsonian [Rb(16.17)7Bnr] and reciprocal [T(16:17)43H] translocations and also in tertiary trisomics for the proximal region of chromosome 17. In all these genotypes an extensive zone of asynapsis/desynapsis around the breakpoints was revealed. At the same time a high frequency of non-homologous pairing was observed in precentromeric regions of acrocentric chromosomes. The presence in the proximal region of chromosome 17 of the t haplotype did not affect the synaptic behaviour of this region. Chiasma frequency in the proximal region of chromosome 17 in the T(16:17)43H heterozygotes and trisomics was increased when compared with that in Robertsonian heterozygotes.by H.C. Macgregor  相似文献   

2.
It was demonstrated that mutations T, Fu, Ki, t6 of chromosome 17 cause preferential transmission of the acrocentric homologues to the progeny from female Rb heterozygotes. The results indicate that the effects of these mutations on segregation are restricted to the Robertsonian translocations involving chromosome 17. Substitution of the parts of chromosome 17 distal or proximal to the T-locus did not alter the effect, of this chromosome on the transmission rate of the homologue. The transmissions effects of these mutations, whether cis or trans with Rb, were the same. It was observed that mothers Rb7/T43H transmitted the chromosome with the reciprocal translocation T43H to 70.9% of their progeny. Data were obtained supporting the idea that structural changes of the chromosomes caused by mutations affect segregation of the homologues in Rb heterozygous females. The possible mechanism of this influence is discussed.  相似文献   

3.
The properties of the t haplotypes, specific mutant states of the proximal region of chromosomes 17 in the house mouse, are of continuing interest. One such property is increased transmission of the t haplotype by heterozygous t/+ males to offspring. Using the reciprocal translocation T(16;17)43H we have constructed males with tertiary trisomy of chromosome 17 (+T43/+ +/Rb7+) carrying the Robertsonian translocation Rb(16.17)7Bnr. Only the progeny of these males which had inherited either T43/+ or Rb7 from their male parent were viable. The segregation patterns in the offspring of t-bearing trisomics were analysed on days 16-18 of embryonic development. It was found that, when the t12 haplotype is in the normal acrocentric (males+ +T43/+ t12 + /Rb7+ +), its presence in the gamete +t12+/+ + T43 does not produce meiotic drive. However, when t6 is in Rb7, meiotic drive was observed: 80% of offspring carried the t haplotype. It is concluded that the meiotic drive is probably inhibited by the presence of a normal homologue of chromosome 17 in the same sperm. Possible mechanisms for the t haplotype effect are discussed.  相似文献   

4.
The properties of the t haplotypes, specific mutant states of the proximal region of chromosome 17 in the house mouse keep renewing interest. One such property is increased transmission of the t haplotype from heterozygous t/+ males to their offspring. By means of reciprocal translocation T (16; 17)43H, we have constructed males with tertiary trisomy 17 (+T43/++/RB7+) carrying Robertsonian translocation Rb(16.17)7Bnr. The offspring of these males was viable when sperm of +T43/++ and Rb7+ was used. The segregation patterns in the offspring of t-bearing trisomics were analysed on days 16-18 of embryonic development. It was found that in the case when the t haplotype is on the normal acrocentric (male male ++T43/+t12+/Rb7++), its presence in the gamete +t12+/++T43 does not produce meiotic drive. However, when t6 is on Rb7, meiotic drive was equal to 80%. It is concluded that the presence of a normal homolog and a t-bearing chromosome in sperm does not result in meiotic drive. Possible mechanisms of meiotic drive of the t haplotypes are discussed.  相似文献   

5.
An electron microscopy study of synaptonemal complexes in two men carrying reciprocal translocations, a t(19;22) and a t(17;21), is reported. It is shown that a delay in synapsis affects the segments corresponding to the short arms of the acrocentrics involved in the formation of quadrivalents. This appears to provoke an interaction with the sex bivalent which could lead to a failure of spermatogenesis. A study of the literature comparing reciprocal translocations that do and do not involve acrocentrics in sterile and fertile men shows the existence of a significant association between the presence of an acrocentric in the rearrangement and sterility. These results on reciprocal translocations involving at least one acrocentric chromosome correspond to those obtained in cases of Robertsonian translocations.  相似文献   

6.
Oocyte numbers and synaptonemal complexes were studied in two Robertsonian translocations, Rb(6.15)1Ald and Rb(4.6)2Bnr, and their male-sterile compound. Oocyte numbers in the compound were lower than those of either parent, and there was a marked difference between reciprocal crosses. Synaptonemal complexes of homozygous females appeared as 19 bivalents, those of single heterozygotes as 18 bivalents and a trivalent, and those of compound heterozygotes as 17 bivalents and a quadrivalent. Most trivalents were fully paired, whereas the majority of quadrivalents exhibited terminal asynapsis. About one-half of all oocytes had other pairing abnormalities, probably reflecting reduced survivability. Whereas all fully paired quadrivalents were present in cells not showing any pairing anomalies, one-half of the quadrivalents with terminal asynapsis were seen in oocytes with other anomalies. It is suggested that in oocytes destined for atresia, there is a predisposition to synaptic failure of translocation configurations. Additional oocytes are likely to break down because of the deleterious effect of the compound translocation on gametogenesis. This effect seems to be more pronounced in Rb1Ald/Rb2Bnr spermatocytes than in oocytes.  相似文献   

7.
Analysis of the chromosome behaviour at pachytene has been performed by means of the silver staining technique visualizing the synaptonemal complexes (SCs) in male mice heterozygous for the male-sterile translocations T(5;12)31H, T(16;17)43H and T(7;19)145H, respectively. The T(9;17)138Ca male heterozygotes and T43H/T43H homozygous males were used as fertile controls. The sterile mice displayed a high frequency (about 60%) of pachytene spermatocytes with autosomal translocation configuration located in close vicinity of the XY pair. The dense round body (XAB), normally located near the X-chromosome axis in fertile males, exhibited abnormal affinity to translocation configuration in the sterile translocation heterozygotes. The incomplete synapsis of autosomes involved in translocation configuration was observed in more than 70% of the pachytene spermatocytes with the male-sterile translocations but in less than 20% of the cells from T138Ca fertile male.s. A hypothesis relating the spermatogenic arrest of carriers of male-sterile rearrangements to the presumed interference with X chromosome inactivation in male meiosis is discussed.  相似文献   

8.
Summary Pachytene analysis was undertaken in an infertile male, heterozygous for a 17;21 reciprocal translocation. The quadrivalent was identified by its configuration and chromomere pattern. A non-random association was found between the quadrivalent and the sex vesicle in 77% of the pachytene nuclei analysed. In 13.1% of the cells the contact with the sex vesicle was established by the terminal chromomere of the two chromosomes 21; in 63.9% of the cells, the entire region of the breakpoints was completely hidden by the sex vesicle. In some nuclei asynapsis was found in the region of the breakpoints. The nature of the contact between the quadrivalent and the sex vesicle is discussed in this paper. It is proposed that the acrocentric chromosome favours the contact between the quadrivalent and the sex vesicle, and increases the risk of sterility in male carriers of Robertsonian translocations and of reciprocal translocations involving one acrocentric chromosome.  相似文献   

9.
Four tertiary trisomic plants are reported here, two of them (Nos. Tr11 and Tr13) from selfed progeny of a triploid Pearl millet and the other two (Nos. 3/12 and 16/7) from the progenies of radiation induced interchange heterozygotes. The extra chromosome in Tr13 and 3/12 was the nucleolus organizing chromosome. In No. 16/7 an extra chromosome enters into an association chromosomes were also involved. Meiotic behaviour in these four trisomics indicates that Tr11 and 3/12 are tertiary trisomics. It is suggested that two reciprocal translocations have occurred between two sets of chromosomes in the triploid parent and that syngamy has taken place in such a way that four interchange chromosomes and one non-interchange nucleolus organizing chromosome have come together in the offspring. The extra chromosome in No. 16/7 is an interchange chromosome which is homologous to one of the chromosomes of an interchange complex of six chromosomes.  相似文献   

10.
Rearrangements of the acrocentric chromosomes (Robertsonian translocations and isochromosomes) are associated with an increased risk of aneuploidy. Given this, and the large number of reported cases of uniparental disomy (UPD) associated with an acrocentric rearrangement, carriers are presumed to be at risk for UPD. However, an accurate risk estimate for UPD associated with these rearrangements is lacking. A total of 174 prenatally identified acrocentric rearrangements, including both Robertsonian translocations and isochromosomes, were studied prospectively to identify UPD for the chromosomes involved in the rearrangements. The overall goal of the study was to provide an estimate of the risk of UPD associated with nonhomologous Robertsonian translocations and homologous acrocentric rearrangements. Of the 168 nonhomologous Robertsonian translocations studied, one showed UPD for chromosome 13, providing a risk estimate of 0.6%. Four of the six homologous acrocentric rearrangements showed UPD, providing a risk estimate of 66%. These cases have also allowed delineation of the mechanisms involved in producing UPD unique to Robertsonian translocations. Given the relatively high risk for UPD in prenatally identified Robertsonian translocations and isochromosomes, UPD testing should be considered, especially for cases involving the acrocentric chromosomes 14 and 15, in which UPD is associated with adverse clinical outcomes.  相似文献   

11.
In Drosophila melanogaster, gametes formed by oocytes in which Robertsonian translocations were induced in an immature stage usually show chromosomal imbalance. It is estimated that fewer than 20% of the gametes bearing newly induced Robertsonian translocations “fusing” X and fourth chromosomes are of balanced constitution. In contrast, when the two acrocentric pairs, X and fourth chromosomes, are replaced by an X-4 Robertsonian translocation, treatment of immature oocytes of homozygotes produces some 5–6-fold fewer sex-chromosome trisomics than do females of normal karyotype. In the place of such trisomics (having separate sex chromosomes), there is a much smaller number of compound-X chromosomes formed and a number of compound-fourth chromosomes as well. However, the production of “XO” males is not appreciably smaller in the translocation homozygotes. A number of possible mechanisms to account for this are suggested. The findings are consistent with the expectations of the hypothesis that radiation-induced nondisjunction results from improper conjunctions of heterologues, brought about by chromatid interchange7–12, 16.  相似文献   

12.
An electron microscopic study of synaptonemal complexes in two heterozygous fertile boars, one a carrier of a 4;14 reciprocal translocation and the second a carrier of this translocation associated with a 3;7 reciprocal translocation, is reported. The results showed heterologous pairing in almost all quadrivalents, as well as a lack of XY-quadrivalent association. This seemed to be a common feature of translocations in pigs, even if at least one acrocentric chromosome is involved, and may represent a significant meiotic mechanism that prevents spermatocyte loss, while the production of genetically unbalanced gametes leads to loss of progeny through abortion.  相似文献   

13.
The influence of X-autosome Robertsonian (Rb) translocation hemizygosity on meiotic chromosome behaviour was investigated in male mice. Two male fertile translocations [Rb(X.2)2Ad and Rb(X.9)6H] and a male sterile translocation [Rb(X.12)7H] were used. In males of all three Rb translocation types, the acrocentric homologue of the autosome involved in the rearrangement regularly failed at pachytene to pair completely with its partner in the Rb metacentric. The centric end of the acrocentric autosome was found regularly to associate either with the proximal end of the Y chromosome or with the ends of nonhomologous autosomal bivalents; the proportions of cells with such configurations varied between pachytene substages and genotypes. Various other categories of synaptic anomaly, such as nonhomologous synapsis, foldback pairing and interlocks, affected the sex chromosome multivalent in a substantial proportion of cells. In one of the Rb(X.12)7H males screened, an unusual, highly aneuploid spermatocyte that contained trivalent and bivalent configurations was found. Rb translocation hemizygosity did not appear to increase to a significant extent the incidence of X-Y pairing failure at pachytene, although the incidence was elevated at metaphase I in Rb(X.12)7H animals. Overall, a comparison of the frequencies and types of chromosome pairing anomalies did not suggest that these were important factors in the aetiology of infertility in males carrying the Rb(X.12)7H translocation.  相似文献   

14.
First and second meiotic metaphases (MI and MII, respectively) from female mice of Robertsonian translocation (Rb) stock, trisomic for chromosome 16 (Ts16) or 19 (Ts19), were studied. The mature trisomic oocytes were derived from explanted fetal ovaries that had been cultured and then transplanted so as to mature heterotopically. Multivalent configurations involving the Rb chromosomes and the additional trisomic acrocentric were analysed. Pentavalent configurations occurred in 74.5% of 98 Ts16 MI and 44.2% of 249 Ts19 MI oocytes; quadrivalents (with a univalent acrocentric) were found in 9.2% of Ts16 MI and 10.8% of Ts19 MI oocytes. In 1% of Ts16 MI and 4% of Ts19 MI oocytes, there were two Rb bivalents and a univalent trisomic acrocentric. Rb trivalents and Rb bivalents occurred together in 14.3% of Ts16 MI and 39.4% of Ts19 MI oocytes. Chiasma frequencies were similar in trisomic and chromosomally balanced MI. Chiasma position, distribution, and localization were nearly identical, whether they were found in Rb multivalents or acrocentric bivalents, but one control group (from chromosomally balanced Ts19 littermates) had significantly more terminal chiasmata. Within the triple homologous region of 8% of Rb pentavalents, two chiasmata were observed in the same relative position in the two sister chromatids of one of the three homologs, suggesting a lapse in chiasma position interference. Assortment at MI anaphase was influenced by secondary nondisjunction of the Rb. The ratio of balanced to unbalanced MII oocytes was 1:4 in both trisomies.  相似文献   

15.
The prophase oocytes of two murine Robertsonian translocation (Rb) trisomies of chromosomes 16 and 19 were investigated using electron microscopy and a whole-cell micro-spreading technique after silver staining. About 20% of fetuses of each type were trisomic. They were obtained by mating animals heterozygous for two Rb's, monobrachially homologous for either chromosome 16 or 19, to an entirely acrocentric stock. Because of the almost inevitable prenatal mortality of the trisomic embryos, their fetal ovaries were "rescued" by an in vitro method for prophase studies. Analysis of the recovered oocytes showed frequent, close pairing associations of the three trisomic axes and evidence suggesting that the closely apposed axes coincided with the side-by-side formation of parallel, complete, true synaptonemal complexes; hence, the cytogenetic dogma that pairing is always two-by-two was contradicted. The presence of two parallel complexes has implications for crossing-over recombination. Triple associations of axes were found in almost half the trisomy 19 (Ts19) and in about 70% of the trisomy 16 (Ts16) prophases. The extent of triple associations varied and was greater in Ts16 than in Ts19 oocytes. Other relevant observations concerned the proportions of univalents and of univalence of the trisomic axes (21% in Ts16 and 46% in Ts19) and the distinctive, thickened appearance of all univalent axes. The pairing behaviour observed in balanced heterozygotes confirms what appears to be nonhomologous pairing and synaptic adjustment within the short-arm axes of the Rb trivalents.  相似文献   

16.
A Robertsonian translocation results in a metacentric chromosome produced by the fusion of two acrocentric chromosomes. Rb heterozygous mice frequently generate aneuploid gametes and embryos, providing a good model for studying meiotic nondisjunction. We intercrossed mice heterozygous for a (7.18) Robertsonian translocation and performed molecular genotyping of 1812 embryos from 364 litters with known parental origin, strain, and age. Nondisjunction events were scored and factors influencing the frequency of nondisjunction involving chromosomes 7 and 18 were examined. We concluded the following: 1. The frequency of nondisjunction among 1784 embryos (3568 meioses) was 15.9%. 2. Nondisjunction events were distributed nonrandomly among progeny. This was inferred from the distribution of the frequency of trisomics and uniparental disomics (UPDs) among all litters. 3. There was no evidence to show an effect of maternal or paternal age on the frequency of nondisjunction. 4. Strain background did not play an appreciable role in nondisjunction frequency. 5. The frequency of nondisjunction for chromosome 18 was significantly higher than that for chromosome 7 in males. 6. The frequency of nondisjunction for chromosome 7 was significantly higher in females than in males. These results show that molecular genotyping provides a valuable tool for understanding factors influencing meiotic nondisjunction in mammals.  相似文献   

17.
V S Baranov 《Genetika》1985,21(10):1685-1692
Developmental profiles of mouse embryos with deletions, duplications of nullisomy for the proximal part AB of chromosome 17, including genes of the T-t complex, were studied in mice with marker translocations Rb (16.17)7Bnr or T(16;17)43H and heterozygous for lethal t12 mutation. The embryos t12t12 and t12t12-(Dp17CDE; Dl16) were shown to be eliminated at the morula stage; embryos t12+, t12+ + or t12t12+ survive during preimplantation and early postimplantation stages: t12 embryos (hemizygous for all genes of the 17AB region, including all t-alleles) have quite normal cleavage, blastulation and implantation, but die soon thereafter. The embryos with nullisomy 17AB combined with deletion 17CDE survive up to the morula stage. These data are in line with previously proposed hypothetical mechanism for mutual activation of homologous chromosomes and their segments during initial stages of embryogenesis in mice. The system of marker chromosomes Rb7Bnr and T43H in combination with various alleles of the T complex might be recommended as a useful tool in analysis of primary developmental effects of different t-alleles in mice.  相似文献   

18.
Summary The behaviour of chromosome 15 is very different from that of the other acrocentric chromosomes. The cytogenetic characteristics of rearrangements associated with Prader-Willi syndrome (PWS) are analyzed as similar rearrangements irrespective of the associated phenotype (reciprocal translocations of chromosome 15, small bisatellited additional chromosomes, Robertsonian translocations, interstitial deletions, pericentric inversions). This study suggests that: (1) The proximal (15q) region and PWS seem to be indissociable; (2) chromosome 15 has an indisputable cytogenetic originality which could be related to its histochemical properties. Chromosome 15 constitutive heterochromatin usually contains much 5-methylcytosine-rich DNA and a large amount of each of the four satellite DNAs. Furthermore the existence in the proximal (15q) region of one or several palindromic sequences could be postulated to explain the great lability of this region of chromosome 15.  相似文献   

19.
We characterized 21 t(13;14) and 3 t(14;21) Robertsonian translocations for the presence of DNA derived from the short arms of the translocated acrocentric chromosomes and identified their centromeres. Nineteen of these 24 translocation carriers were unrelated. Using centromeric alpha-repeat DNA as chromosome-specific probe, we found by in situ hybridization that all 24 translocation chromosomes were dicentric. The chromatin between the two centomeres did not stain with silver, and no hybridization signal was detected with probes for rDNA or beta-satellite DNA that flank the distal and proximal ends of the rDNA region on the short arm of the acrocentrics. By contrast, all 24 translocation chromosomes gave a distinct hybridization signal when satellite III DNA was used as probe. This result strongly suggests that the chromosomal rearrangements leading to Robertsonian translocations occur preferentially in satellite III DNA. We hypothesize that guanine-rich satellite III repeats may promote chromosomal recombination by formation of tetraplex structures. The findings localize satellite III DNA to the short arm of the acrocentric chromosomes distal to centromeric alpha-repeat DNA and proximal to beta-satellite DNA.  相似文献   

20.
Martí DA  Bidau CJ 《Hereditas》2001,134(3):245-254
Dichroplus pratensis has a complex system of Robertsonian rearrangements with central-marginal distribution; marginal populations are standard telocentric. Standard bivalents show a proximal-distal chiasma pattern in both sexes. In Robertsonian individuals a redistribution of chiasmata occurs: proximal chiasmata are suppressed in fusion trivalents and bivalents which usually display a single distal chiasma per chromosome arm. In this paper we studied the synaptic patterns of homologous chromosomes at prophase I of different Robertsonian status in order to find a mechanistic explanation for the observed phenomenon of redistribution of chiasmata. Synaptonemal complexes of males with different karyotypes were analysed by transmission electron microscopy in surface-spread preparations. The study of zygotene and early pachytene nuclei revealed that in the former, pericentromeric regions are the last to synapse in Robertsonian trivalents and bivalents and normally remain asynaptic at pachytene in the case of trivalents, but complete pairing in bivalents. Telocentric (standard) bivalents usually show complete synapsis at pachytene, but different degrees of interstitial asynapsis during zygotene, suggesting that synapsis starts in opposite (centromeric and distal) ends. The sequential nature of synapsis in the three types of configuration is directly related to their patterns of chiasma localisation at diplotene-metaphase I, and strongly supports our previous idea that Rb fusions instantly produce a redistribution of chiasmata towards chromosome ends by reducing the early pairing regions (which pair first, remain paired longer and thus would have a higher probability of forming chiasmata) from four to two (independently of the heterozygous or homozygous status of the fusion). Pericentromeric regions would pair the last, thus chiasma formation is strongly reduced in these areas contrary to what occurs in telocentric bivalents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号