首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the brain oxidative stress which accompanies 30 min of bilateral carotid artery ligation (BCAL) in terms of changes in brain levels of glutathione; reduced (GSH) and oxidized (GSSG) forms and the exacerbation of oxidative stress by disulfiram (DSF). These results indicate that BCAL alone decreases GSH content and limits glutathione reductase (GR) activity, and these changes were enhanced by DSF pretreatment. Similar observations were recorded with DSF alone. GR activity (74.3±4.0 µmol min–1 mg–1 tissue; p<0.001) and GSH content (1.23±0.06 µmol min–1g–1 tissue; p<0.001) was attenuated in rats subjected to synergistic effect of BCAL and DSF with a concomitant increase of GSSG (0.006±0.006 µmol min–1 g–1 tissue; p<0.001). Recovery of GSH/GSSG level and GR activity during reperfusion following 30 min BCAL was considerably delayed (96 h) in the BCAL and DSF group as compared to the recovery time of 24 h in the group subjected to BCAL-reperfusion alone. Perturbation of GSH/GSSG homeostasis as a result of BCAL was augmented by DSF. These findings clearly demonstrate central nervous system oxidative stress due to a BCAL-DSF synergistic effect. Based on the results obtained with this model, we conclude that DSF increases brain oxidative stress and this may be detrimental to alcoholics who might drink and develop an acetaldehyde-induced hypotension while taking DSF.  相似文献   

2.
Exposure of yeast cells to allyl alcohol results in intracellular production of acrolein. The toxicity of so formed acrolein involves oxidative stress, as (1) strains deficient in antioxidant defense are hypersensitive to allyl alcohol, (2) exposure to allyl alcohol increases the level of thiobarbituric-acid-reactive substances and decreases glutathione level in the cells, (3) hypoxic and anoxic atmosphere and antioxidants protect against allyl alcohol toxicity, and (4) allyl alcohol causes activation of Yap1p. No increased formation of reactive oxygen species was detected in cells exposed to allyl alcohol, so oxidative stress is due to depletion of cellular thiols and thus alteration in the redox state of yeast cells.  相似文献   

3.
4.
Vitamin A (Vit A) is widely suggested to be protective against oxidative stress. However, different studies have been demonstrated the pro-oxidant effects of retinoids in several experimental models. In this work, we used the yeast Saccharomyces cerevisiae as a model organism to study the Vit A effects on superoxide dismutase (SOD)-deficient yeast strains. We report here that Vit A (10, 20 and 40 mg/ml) decreases the survival of exponentially growing yeast cells, especially in strains deficient in CuZnSOD (sod1Δ) and CuZnSOD/MnSOD (sod1Δsod2Δ). We also observed the protective effect of vitamin E against the Vit A-induced toxicity. Possible adaptation effects induced by sub-lethal oxidative stress were monitored by pre-, co- and post-treatment with the oxidative agent paraquat. The enzymatic activities of catalase (CAT) and glutathione peroxidase (GPx), and the total glutathione content were determined after Vit A treatment. Our results showed that CuZnSOD represents an important defence against Vit A-generated oxidative damage. In SOD-deficient strains, the main defence against Vit A-produced reactive oxygen species (ROS) is GPx. However, the induction of GPx activity is not sufficient to prevent the Vit A-induced cell death in these mutants in exponential phase growth.  相似文献   

5.
Examination of cadmium (Cd) toxicity and disulfiram (DSF) effect on liver was focused on oxidative stress (OS), bioelements status, morphological and functional changes. Male Wistar rats were intraperitoneally treated with 1?mg CdCl2/kg BW/day; orally with 178.5?mg DSF/kg BW/day for 1, 3, 10 and 21 days; and co-exposed from 22nd to 42nd day. The co-exposure nearly restored previously suppressed total superoxide dismutase (SOD), catalase (CAT) and increased glutathione peroxidase (GPx) activities; increased previously reduced glutathione reductase (GR) and total glutathione-S-transferase (GST) activities; reduced previously increased superoxide anion radical (O2·?) and malondialdehyde (MDA) levels; increased zinc (Zn) and iron (Fe), and decreased copper (Cu) (yet above control value), while magnesium (Mg) was not affected; and decreased serum alanine aminotransferases (ALT) levels. Histopathological examination showed signs of inflammation process as previously demonstrated by exposure to Cd. Overall, we ascertained partial liver redox status improvement, compared with the formerly Cd-induced impact.  相似文献   

6.
The structural gene encoding bacterioferritin comigratory protein (Bcp) was amplified using PCR from the genomic DNA of Schizosaccharomyces pombe, and transferred into the shuttle vector pRS316 to generate the recombinant plasmid pBCPlO. The bcp + mRNA level in the pBCPlO-containing yeast cells was significantly higher than that in the control yeast cells, indicating that the cloned gene is functioning. The S. pombe cells harboring the plasmid pBCPIO exhibited higher survival on the solid minimal media with hydrogen peroxide, tert-BOOH or cadmium than the control yeast cells. They also exhibited enhanced cellular viability in the liquid media containing the stressful agents. The increased viabilities of the fission yeast cells harboring the plasmid pBCP10 were also obtained with 0.4% glucose or 0.4% sucrose as a sole carbon source, and nitrogen starvation, compared with those of the control yeast cells. The total glutathione (GSH) content and total GSH/GSSG ratio were significantly higher in the yeast cells harboring the plasmid pBCP10 than in the control yeast cells. In brief, the S. pombe Bcp plays a protective role in the defensive response to oxidative stress possibly via up-regulation of total and reduced glutathione levels.  相似文献   

7.
Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.  相似文献   

8.
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. l-Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of γ-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl2, BSO, or MnCl2 plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl2 or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).  相似文献   

9.
When yeast cells are exposed to sublethal concentrations of oxidants, they adapt to tolerate subsequent lethal treatments. Here, we show that this adaptation involves tolerance of oxidative damage, rather than protection of cellular constituents. o- and m-tyrosine levels are used as a sensitive measure of protein oxidative damage and we show that such damage accumulates in yeast cells exposed to H(2)O(2) at low adaptive levels. Glutathione represents one of the main cellular protections against free radical attack and has a role in adaptation to oxidative stress. Yeast mutants defective in glutathione metabolism are shown to accumulate significant levels of o- and m-tyrosine during normal aerobic growth conditions.  相似文献   

10.
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H2O2, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H2O2 or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H2O2. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains.  相似文献   

11.
The effect of glutathione enrichment and depletion on the survival of Pachysolen tannophilus after ethanol stress was investigated. In this work, we verified that both control and glutathione deficient yeast cells were much more oxidized after ethanol stress. Depletion of cellular glutathione enhanced the sensitivity to ethanol and suppressed the adaptation. Incubation of the cell with amino acids constituting glutathione (GIu, Cys, Gly) increased the intracellular glutathione content, and subsequently the cell acquired resistance against ethanol. The level of reactive oxygen species, protein carbonyl, and lipid peroxidation in glutathione enriched groups were also studied. These results strongly suggest that intracellular glutathione plays an important role in the adaptive response in P. tannophilus to ethanol induced oxidative stress.  相似文献   

12.
Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.  相似文献   

13.
Our objective was to study if the phycobiliproteins of the cyanobacterium Pseudanabanea tenuis rich in phycoerythrin protect renal cells against mercury-caused oxidative stress and cellular damage in the kidney. We used 40 male mice that were assigned into five groups: a control group that received phosphate buffer (PB) and saline and four treatment groups which received either PB+HgCl2, PB+phycobiliproteins, or HgCl2+phycobiliproteins. The kidneys of the mice were used to determine lipid peroxidation and quantification of reactive oxygen species, oxidized glutathione, and peroxidase activities (catalase and glutathione peroxidase) and were also examined histologically. Our results demonstrated that HgCl2 causes oxidative stress and cellular damage and that all doses of phycobiliproteins prevented the increase of oxidative markers and partially protected against HgCl2-caused cell damage. This is the first report which applied phycobiliproteins of P. tenuis rich in c-phycoerythrin, like antioxidants against mercury chloride-caused oxidative stress and renal damage.  相似文献   

14.
15.
The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains.  相似文献   

16.
Induction of the oxidative stress response has been described under many physiological conditions in Saccharomyces cerevisiae, including industrial fermentation for wine yeast biomass production where cells are grown through several batch and fed-batch cultures on molasses. Here, we investigate the influence of aeration on the expression changes of different gene markers for oxidative stress and compare the induction profiles to the accumulation of several intracellular metabolites in order to correlate the molecular response to physiological and metabolic changes. We also demonstrate that this specific oxidative response is relevant for wine yeast performance by construction of a genetically engineered wine yeast strain overexpressing the TRX2 gene that codifies a thioredoxin, one of the most important cellular defenses against oxidative damage. This modified strain displays an improved fermentative capacity and lower levels of oxidative cellular damages than its parental strain after dry biomass production.  相似文献   

17.
The purpose of this study was to evaluate the effect of pomegranate (Punica granatum) in inhibiting and reversing the nephrotoxicity of carbon tetrachloride, a potent oxidative stress inducer which induces cellular kidney damage. Rats were intraperitoneally injected with carbon tetrachloride (2 mL/kg body weight) which produced severe renal tissue damage, as demonstrated by decreased uric acid and dramatic elevation of urea and creatinine. In addition, carbon tetrachloride injection caused oxidative stress in rats, as evidenced by increased lipid peroxidation and nitrite/nitrate (NO x ) concentrations in the renal tissue, along with a remarkable reduction in superoxide dismutase, catalase, glutathione transferase, glutathione reductase, glutathione peroxidase activities and glutathione content. We suggested that pomegranate juice was able to elevate the antioxidant defense system, clean up free radicals, lessen oxidative damages and protect the kidney against carbon tetrachloride-induced toxicity, thus having a potential protective effect.  相似文献   

18.
Purpose

Hyperglycemia causes abnormal accumulation of methylglyoxal (MGO) and concomitant DNA, protein glycation. These pathophysiological changes further leads to diabetic complications. Yeast Saccharomyces cerevisiae is one of the best model to study MGO-induced glycation modifications. The aim of the present study was to investigate the effect of MGO on protein, DNA glycation, and oxidative stress markers using S. cerevisiae as a system.

Methods

Saccharomyces cerevisiae cells were incubated with 8 mM of MGO for 4 h and 24 h. After incubation, protein and DNA samples were isolated from the lysed cells. The samples were analyzed for various glycation (fructosamine, β-amyloid, free amino group, free thiol group, and hyperchromic shift analysis) and oxidative stress markers (total antioxidant potential, catalase, glutathione, and lipid peroxidation).

Results

MGO (8 mM) acted as a potent glycating agent, causing protein and DNA glycation in treated yeast cells. The glycation markers fructosamine and β-amyloid were significantly elevated when incubated for 4 h as compared to 24 h. Oxidative stress in the glycated yeast cells alleviated cellular antioxidant capacity and reduced the cell viability.

Conclusion

MGO caused significant glycation modifications of proteins and DNA in yeast cells. It also triggered increase in intracellular oxidative stress. MGO-induced protein, DNA glycation, and oxidative stress in S. cerevisiae indicate the suitability of the yeast model to study various biochemical pathways involved in diabetic complications and even conformational pathologies.

  相似文献   

19.
Glutathione (L-γ-Glutamyl-L-Cysteinylglycine) appears as the major nonprotein thiol compound in yeasts. Recent advances have shown that glutathione (GSH) seems to be involved in the response of yeasts to different nutritional and oxidative stresses. When the yeast Saccharomyces cerevisiae is starved for sulfur or nitrogen nutrients, GSH may be mobilized to ensure cellular maintenance. Glutathione S-transferases may be involved in the detoxification of electrophilic xenobiotics. Vacuolar transport of metal derivatives of GSH ensure resistance to metal stress. Growth of methylotrophic yeasts on methanol results in the formation of an excess formaldehyde that is detoxified by a GSH-dependent formaldehyde dehydrogenase. Growth of yeasts on glycerol results in the accumulation of methylglyoxal detoxified by the glyoxalase pathway. Glutathione per se can react with oxidative agents or is involved in the oxidative stress response through glutathione peroxidase.  相似文献   

20.
One biochemical response to increased H2O2 availability is the accumulation of glutathione disulphide (GSSG), the disulphide form of the key redox buffer glutathione. It remains unclear how this potentially important oxidative stress response impacts on the different sub‐cellular glutathione pools. We addressed this question by using two independent in situ glutathione labelling techniques in Arabidopsis wild type (Col‐0) and the GSSG‐accumulating cat2 mutant. A comparison of in situ labelling with monochlorobimane (MCB) and in vitro labelling with monobromobimane (MBB) revealed that, whereas in situ labelling of Col‐0 leaf glutathione was complete within 2 h incubation, about 50% of leaf glutathione remained inaccessible to MCB in cat2. High‐performance liquid chromatography (HPLC) and enzymatic assays showed that this correlated tightly with the glutathione redox state, pointing to significant in vivo pools of GSSG in cat2 that were unavailable for MCB labelling. Immunogold labelling of leaf sections to estimate sub‐cellular glutathione distribution showed that the accumulated GSSG in cat2 was associated with only a minor increase in cytosolic glutathione but with a 3‐ and 10‐fold increase in plastid and vacuolar pools, respectively. The data are used to estimate compartment‐specific glutathione concentrations under optimal and oxidative stress conditions, and the implications for redox homeostasis and signalling are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号