首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pea (Pisum sativum L.) seedlings were exposed to low, moderate, and high regimes of ultraviolet-B (UV-B) (ld-B 4.4, md-B 13.3, and hd-B 26.5 kJ m−2 day−1), or ultraviolet-C (UV-C) (ld-C 0.1, md-C 0.3, and hd-C 0.6 kJ m−2 day−1) radiations. Concentrations of total phenols, free proline, and low-molecular thiol groups were determined in the last formed (young) and older leaves after irradiation for 7, 10 or 14 consecutive days. Shoot length and weight did not change markedly after 14 days of ld-B and ld-C, but reduced substantially after moderate and high regimes of both UV-B and UV-C. Proline decreased upon high doses of irradiation, while in ld-B treated plants, by contrast, an increase was observed. The reduction in total phenols and thiols was stronger after hd-B than after hd-C irradiations, although an induction was found in ld-B treated plants. In contrast to ld-B, ld-C regime led mainly to reductions or insignificant changes in proline, phenols, and thiols. Therefore, the stress-protection mechanisms are different between low UV-B and UV-C irradiation regimes in regard to proline, phenols, and thiols.  相似文献   

2.
Barley (Hordeum vulgare L. cv. Alfa) seedlings were treated for 4 d before UV-B irradiation with 0.05 mM proline or 150 mM NaCl. UV-B exposure induced synthesis of yellow coloured compounds with maximum absorbance at 438 nm. The content of these compounds was increased in proline-treated and decreased in NaCl-treated plants. UV-B radiation reduced chlorophyll/carotenoids ratio, oxygen evolution rate and photochemical efficiency of PS 2 as estimated by chlorophyll fluorescence and increased proline accumulation, H2O2 generation and lipid peroxidation. Exogenous proline had no effect on the parameters studied and did not change the response of plants to UV-B radiation. NaCl inhibited photochemical efficiency of PS 2, reduced oxygen evolution and increased H2O2 concentration and lipid peroxidation. The combination of NaCl and proline treatment led to lowering the inhibitory effect of NaCl in non UV-B irradiated seedlings. There was not relationship between the level of UV-B-induced compounds and UV-B tolerance of barley seedlings.  相似文献   

3.
Tomato (Lycopersicon esculentum Mill. cv. PKM 1) plants growing under field conditions were exposed for 15 d to solar radiation with UV-B component (280 - 320 nm) enhanced to 6.3 kJ m-2 d-1. This simulated a 15% stratospheric ozone depletion over Madurai (9° 50′ N latitude). Lipid peroxidation in the leaves of UV-B treated plants was 32% higher compared to the control. Superoxide dismutase (SOD) and catalase activities registered parallel promotion by 126 and 50 %, respectively, in the UV-B treated plants. Further, the contents of total phenols and anthocyanins in the leaves have also been enhanced by 40 and 156%, respectively. On the contrary, polyphenol oxidase activity demonstrated a 58 % inhibition in the leaves of UV-B treated plants. While anthocyanins and phenols are proposed to act as antioxidants, the reduction in polyphenol oxidase activity may maintain the turnover of phenols in the UV-B treated plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
该研究以幼果期、白果期、转色期的离体‘北陆’蓝莓果实为试材,设置0(CK)、5、10、15min紫外光辐照处理,24h后取样分析蓝莓果实中可溶性糖、总酚、类黄酮和花青苷含量,以及苯丙氨酸裂解酶(PAL)和查尔酮异构酶(CHI)活性的变化,探究UV-B紫外照射处理对不同发育时期蓝莓主要果实品质及相关酶活的影响。结果显示:(1)对于幼果期蓝莓,5min UV-B处理可显著增加果实内可溶性糖含量;10min UV-B处理果实PAL活性增加效果最为显著;15min UV-B处理对果实总酚和花青苷积累的促进作用最大,但显著降低了类黄酮含量和CHI活性。(2)对于白果期蓝莓,5min UV-B处理显著增加了果实类黄酮含量和CHI活性,10min处理使果实可溶性糖和总酚含量较对照分别增加25%和18%;15min处理对果实花青苷含量和PAL活性影响作用最大。(3)对于转色期蓝莓,各处理除果实可溶性糖及类黄酮含量降低外,其余物质含量均显著增加。(4)UV-B处理并未改变果实发育过程中可溶性糖、总酚、类黄酮和花青苷含量及PAL、CHI酶活性的积累规律。(5)蓝莓果内PAL活性与其可溶性糖、总酚和类黄酮的积累呈极显著正相关关系,而CHI活性仅与其可溶性糖呈极显著正相关。研究表明,UV-B辐照处理促进了幼果期和白果期可溶性糖的积累,也能促进不同发育时期蓝莓果实总酚和花青苷及白果期类黄酮的积累,对蓝莓果实主要品质能够产生积极的影响。  相似文献   

5.
Enhanced UV-B irradiation is one of the most important abiotic stresses that can influence various aspects of plant morphology, biochemistry and physiology. Silicon as a beneficial element can increase the plant’s tolerance against different abiotic stresses, including UV-B stress. In this work, the effect of silicon supplementation on the sensitivity of young maize (Zea mays L.) seedlings exposed to short-term UV-B radiation was studied. The seedlings were grown with 0 or 5 mM silicon in cultivation medium and on the fifth day of cultivation, they were exposed for 15 and 30 min to UV-B (302 nm) radiation. No significant changes in growth and content of assimilation pigments and the chlorophyll a/b ratio were observed in any of tested irradiation periods in control or Si-treated plants. Under UV-B stress, the content of ROS (hydrogen peroxide and superoxide radical) and TBARS increased in control plants. The oxidative status of Si-treated plants was only slightly affected even after 30 min. Phenolic metabolites (total phenols and flavonoids), important for their screening function under radiation stress, slightly increased after UV-B exposure in control plants, however, only flavonoids increased after 30 min in Si-treated plants. The measured parameters indicated that to some extent silicon supplementation contributes to higher UV-B tolerance of maize seedlings.  相似文献   

6.
7.
Advances in flavonoid research since 1992   总被引:86,自引:0,他引:86  
Some of the recent advances in flavonoid research are reviewed. The role of anthocyanins and flavones in providing stable blue flower colours in the angiosperms is outlined. The contribution of leaf flavonoids to UV-B protection in plants is critically discussed. Advances in understanding the part played by flavonoids in warding off microbial infection and protecting plants from herbivory are described. The biological properties of flavonoids are considered in an evaluation of the medicinal and nutritional values of these compounds.  相似文献   

8.
为探讨夏季南亚热带森林演替过程中优势树种幼叶的光保护机制,以演替中期优势树种木荷(Schima superba)、黧蒴(Castanopsis fissa)、锥栗(C.chinensis)和演替后期优势种华润楠(Machilus chinensis)、厚壳桂(Cryptocarya chinensis)、黄果厚壳桂(C.concinna)为材料,分析了2种生长光强(全光照和30%全光照)下6种优势种幼叶和成熟叶的叶片表型、光合色素含量、花色素苷含量、抗氧化能力、类黄酮含量、总酚含量和最大量子产量(Fv/Fm)恢复效率间的差异。结果表明,两个演替阶段幼叶的叶绿素含量(Chl a+b)、Chl a/b比成熟叶低,但光保护物质比成熟叶多;演替中期幼叶的花色素苷含量和总抗氧化能力比演替后期的高,而类黄酮和总酚含量比演替后期的低;全光照下幼叶的总酚、类黄酮、总抗氧化能力及Fv/Fm恢复效率都要比30%全光照的高,并且含有花色素苷的幼叶恢复得更快。因此,植物的光合能力与自身的光保护潜力成反比关系,演替中期优势种幼叶的光保护在很大程度上是因为花色素苷的积累而演替后期优势种是因为自身抗氧化物质(类黄酮、总酚)的共同作用。  相似文献   

9.
Common sage (Salvia officinalis L.) plants grown in water culture to the stage of 4–5 true leaves were treated for 12, 24, 36, or 48 h with proline added to nutrient medium to a final concentration of 5 mM, or irradiated with UV-B light (12.3 kJ/m2 for 10 min), or subjected to combined action of these factors. In these plants, activity of proline dehydrogenase (PDH), the content of proline, and the contents of free and conjugated polyamines were determined in the leaves and roots. It was shown that, in control plants, the content of endogenous proline was close to zero. In the presence of proline in medium, its total content in the roots was 9 μmol/g fr wt in 12 h of exposure, whereas in the leaves the content of proline increased only in 24 h and achieved only 1 μmol/g fr wt. The content of free putrescine increased in the leaves and especially in the roots after 10-min irradiation with UV-B light. The biosynthesis of putrescine was induced in the presence of proline in medium and was observed earlier than after UV-B irradiation. UV-B irradiation affected not only the synthesis of putrescine but also that of spermidine and spermine; it also induced accumulation of their soluble conjugates. Exogenous proline enhanced putrescine synthesis but inhibited the formation of polyamine soluble conjugates. At combined treatment of the two factors, the content of free putrescine in the leaves displayed a tendency to the rise and in the roots, to the decrease. At the same time, the content of polyamine free conjugates increased in both leaves and roots. All these facts could be considered as an indirect indication of relationship between proline and polyamine biosyntheses. We can also state that an artificially created high proline concentration in common sage tissues characterized of its low constitutive level resulted in disturbances in the homeostasis of low-molecular cell metabolites and induced a requirement in its restoration by diverse ways. This agrees with activation of PDH, a key enzyme of proline degradation. Induction of polyamine biosynthesis and changes in the content of their soluble conjugates might be one of the ways for such restoration. Under stress conditions, the high proline concentration is not toxic for plants because polyamines and proline are the components of the plant defense system, thus weakening damaging effects of abiotic stressors.  相似文献   

10.
The effect of pre-treatment with 200 mM NaCl on the response of four barley cultivars (Hordeum vulgare L. cv. Bülbül-89, Kalaycı-97, Tarm-92 and Tokak-157/37) to UV-B radiation was investigated. Salt stress as well as UV-B irradiation led to a decrease of the total chlorophyll (chl) content in all cultivars, except in Kalaycı-97. While carotenoids are almost not affected by NaCl treatment, UV-B irradiation caused an increase by 5–20% of carotenoid content of all cultivars. UV-B induced damages of photosynthetic apparatus were estimated by the rate of photosynthetic electron transport measured by chl fluorescence and the rate of oxygen evolution, the latter being more affected. Pre-treatment with NaCl alleviated harmful effect of UV-B irradiation on F v/F m and ETR, but not on oxygen evolution. UV-B-induced and UV-B-absorbing compounds with absorption at 300 and 438 nm increased as a result of UV-B treatment. The level of stress marker proline increased considerably as a result of NaCl treatment, while UV-B irradiation resulted in a pronounced increase of the level of H2O2. MDA enhanced in the seedlings subjected to salt and UV-B stress. Established cross-acclimation to UV-B as a result of salt treatment could be due to the increased free proline and the level of UV-B absorbing compounds in barley seedlings subjected to NaCl.  相似文献   

11.
12.
13.
The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.  相似文献   

14.
UV-B effect on constituents of Azolla caroliniana   总被引:1,自引:0,他引:1  
Changes in growth and ultrastructure of Azolla caroliniana in response to elevated UV-B radiation were investigated. Exposure of plants to UV-B radiation for 1, 8, 16, 24 and 48 h exhibited a significant decrease in biomass and relative growth rate. This decrease resulted in an increase in doubling time over the control. Also, Chl a and b contents were significantly decreased especially after 16 h. The reduction was accompanied by a decrease in 5-aminolaevulinic acid content (precursor of chlorophyll). On the other hand, contents of carotenoid and UV-absorbing phenolic compounds (flavonoids and anthocyanins) were increased.  相似文献   

15.
In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation. Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum.  相似文献   

16.
Near-isogenic lines of maize varying in their genes for flavonoid biosynthesis were utilized to examine the effects of foliar flavonoids and nutrient deficiency on maximum net photosynthetic rate (P N) and chlorophyll (Chl) fluorescence (Fv/Fm) in response to ultraviolet-B (UV-B) radiation. Plants with deficient (30 to 70 % lower N, K, Mn, Fe, and Zn) and sufficient nutrients were exposed to four irradiation regimes: (1) no UV-B with solar photosynthetically active radiation (PAR), (2) two day shift to ambient artificial UV-B, 8.2–9.5 kJ m−2 d−1 (21–25 mmol m−2 d−1); (3) continuous ambient artificial UV-B; (4) continuous solar UV-B in Hawaii 12–18 kJ m−2 d−1 (32–47 mmol m−2 d−1). The natural ratio of UVB: PAR (0.25–0.40) was maintained in the UV-B treatments. In the adequately fertilized plants, lines b and lc had higher contents of flavonoids and anthocyanins than did lines hi27 and dta. UV-B induced the accumulation of foliar flavonoids in lines hi27 and b, but not in the low flavonoid line dta or in the high flavonoid line lc. In plants grown on deficient relative to adequate nutrients, flavonoid and anthocyanin contents decreased by 30–40 and 40–50 %, respectively, and Chl a and Chl b contents decreased by 30 and 70 %, respectively. The UV-B treatments did not significantly affect P N and Fv/Fm in plants grown on sufficient nutrients, except in the low flavonoid lines dta and hi27 in which P N and Fv/Fm decreased by ∼15 %. P N, Fv/Fm, and stomatal conductance decreased markedly (20–30 %) in all lines exposed to UV-B when grown on low nutrients. The decrease in Fv/Fm was 10 % less in higher flavonoid lines b and lc. The photosynthetic apparatus of maize readily tolerated ambient UV-B in the tropics when plants were adequately fertilized. In contrast, ambient UV-B combined with nutrient deficiency significantly reduced photosynthesis in this C4 plant. Nutrient deficiency increased the susceptibility of maize to UV-B-induced photoinhibition in part by decreasing the contents of photoprotective compounds.  相似文献   

17.
The effects of elevated UV-B radiation on growth, symbiotic function and concentration of metabolites were assessed in purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea grown outdoors either on tables under supplemental UV-B radiation or in chambers covered with different types of plexi-glass to attenuate solar ultraviolet radiation. Moderately and highly elevated UV-B exposures simulating 15% and 25% ozone depletion as well as sub- ambient UV-B did not alter organ growth, plant total dry matter and N content per plant in both L. luteus and V. atropurpurea. In contrast, elevated UV-B increased (P <0.05) flavonoid and anthocyanin concentrations in roots and leaves of L. luteus, but not of V. atropurpurea. Feeding nodulated plants of L. luteus under elevated UV-B radiation with 2 mM NO3 increased (P <0.05) nodule, leaf and total dry matter, and whole plant N content. With V. atropurpurea, NO3 reduced (P <0.05) nodule activity, root %N and concentrations of flavonoids, anthocyanins in roots and leaves and soluble sugars in roots, in contrast to an observed increase (P <0.05) in nodule dry matter per plant. Similarly, supplying 2 mM NO3 to L. luteus plants exposed to sub-ambient UV-B radiation significantly reduced individual organ growth, plant total biomass, nodule dry matter, nodule %N, and whole plant N content, as well as root concentrations of flavonoids, anthocyanins, soluble sugars, and starch of L. luteus, but not V. atropurpurea plants. These results show no adverse effect of elevated UV-B radiation on growth and symbiotic function of L. luteus and V. atropurpurea plants. However, NO3 supply promoted growth in L. luteus plants exposed to the highly elevated UV-B radiation.  相似文献   

18.
This work reports on the significance of UV-B absorbing compounds and DNA photorepair in protecting bean plants from UV-B radiation under nitrogen restriction. Bean plants grown in sterile vermiculite and irrigated periodically with a nutrient solution containing 12 or 1 mM of nitrate were irradiated with 22 μW cm−2 of UV-B, 4 h daily during 10 days after the first trifoliate leaf was developed. This intensity was equivalent to 3.2 kJ m−2 per day, approximately. PAR fluence rate was 350 ± 50 μmol quanta m−2 s−1. Control plants did not receive UV-B irradiation. Leaf expansion was negatively affected by both nitrate restriction and UV-B irradiation. This decrease was paralleled by a significant increase in starch, which was exacerbated by the combined action of both factors. Combined action of low nitrogen and UV-B also negatively affected the CO2 assimilation rate and the stomatal conductance. Formation of UV-B absorbing compounds was significantly increased by both UV-B irradiation and nitrogen restriction and this increase was exacerbated by the combination of both factors. No significant increase in dimer formation was detected in irradiated plants at the UV-B dose used. Significant dimer formation was only obtained by using very high UV-B intensities. This suggests that under an irradiation level of 22 μW cm−2 of UV-B, which is close to natural conditions, protective mechanisms such as pigment screening and DNA photorepair were probably sufficient to prevent any dimer formation in leaves.  相似文献   

19.
The effect of UV-B on the photosynthetic apparatus of coniferous trees: Picea abies (L.) Karst., Picea pungens (Engelm.), Pinus sylvestris (L.), Pinus cembra (L.) and Abies alba (Mill.) was investigated. Three and four-year-old plantlets coming from different latitudes, longitudes and altitudes were used. The experiment was carried out in greenhouse. Two doses of ultraviolet-B irradiation were applied: control=0, low dose=11.32 and high dose=22.64 kJ·m−2·d−1 UV-BBE (biologically effective irradiance of UV-B). Measurements of chlorophyll fluorescence, gas exchange, chlorophyll and flavonoids content were carried out. Response of forest trees to an increased UV-B radiation depends on species, location of place of pantalets collecting and UV-B dose. Pinus cembra, Picea abies and Pinus sylvestris from high altitude (1000 m a.s.l.) were less sensitive to UV-B than these from plain location. The altitude determined adaptation of forest coniferous trees to an enhanced UV-B radiation much more than the latitudinal gradient. Permanent discoloration was observed only on the young needles of the fir plantlets that were grown in light limiting conditions. Photosynthetic parameters were affected by the UV-B radiation. Both maximal and the steady state fluorescence of chlorophyll were reduced as a consequence of elevated UV-B in case of some species. The chlorophyll content was enhanced, increased or was not affected according to species and to locations. The flavonoids content in the needles increased with chlorophyll content at both UV-B treatments. An opposite trend was found in the control. The increased content of screening pigments in the needles of all the tested coniferous trees was detected. Picea abies and Picea pungens photosynthesis response curves to the light and to the intercellular CO2 concentration did not change significantly under increased UV-B because of higher concentration in screening pigments in leaves. The increased concentration of flavonoids in forest litter may lead to changes in the biogeochemical cycle in the forest ecosystem.  相似文献   

20.
The objective of the project was to study salinity-induced effects on essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum, the cultivar Perrie) in relation to the alteration of plant morphological development and yield production. Hydroponically grown plants were exposed to one of six NaCl concentrations (1, 25, 50, 75, 100 and 130 mM NaCl). Inhibitory effects of salinity on biomass production of the shoot and the root, and area of individual leaves were apparent already under cultivation with 25 mM NaCl. Elevation of salinity from 1 to 100 mM NaCl induced 63% and 61% reductions in fresh and dry herb biomass production, respectively. The stress-induced reduction of foliage biomass sourced mainly from inhibition of leaf area development rather than reduction of internode and leaf number. Cl and Na concentrations in the leaves, stems and roots increased with elevation of NaCl concentration in the cultivation solution. While the extent of Cl accumulation was leaves>stems>roots, Na was largely excluded from the leaves and was preferentially accumulated in roots and the stems, potentially accounting for the moderate sensitivity of the leaf tissue to salinity. Salt stress increased the contents of essential oil and carotenoids in the leaves that may further account for the moderate sensitivity of sweet basil to salinity and suggest a potential for agro-industrial production. A twofold increase in both carotenoid concentration and the percent of essential oil in the fresh tissue was observed by elevation of the salinity from 1 to 130 mM NaCl. Overall, the stress induced increase of the percent of essential oil in the tissue in the salinity range 1–75 mM NaCl was about 50%, and thereby compensated for the similar reduction of biomass production in this salinity range, so that oil production on per plant basis was not reduced by salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号