首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT)n · (GA)n dinucleotide repeat (n ≈ 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to study the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT)n tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, orangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion.  相似文献   

3.
T Pavelitz  D Liao    A M Weiner 《The EMBO journal》1999,18(13):3783-3792
The genes encoding primate U2 snRNA are organized as a nearly perfect tandem array (the RNU2 locus) that has been evolving concertedly for >35 Myr since the divergence of baboons and humans. Thus the repeat units of the tandem array are essentially identical within each species, but differ between species. Homogeneity is maintained because any change in one repeat unit is purged from the array or fixed in all other repeats. Intriguingly, the cytological location of RNU2 has remained unchanged despite concerted evolution of the tandem array. We had found previously that junction sequences between the U2 tandem array and flanking DNA were subject to remodeling over a region of 200-300 bp during the past 5 Myr in the hominid lineage. Here we show that the junctions between the U2 tandem array and flanking DNA have undergone dramatic rearrangements over a region of 1 to >10 kbp in the 35 Myr since divergence of the Old World Monkey and hominid lineages. We argue that these rearrangements reflect the high level of genetic activity required to sustain concerted evolution, and propose a model to explain why maintenance of homogeneity within a tandemly repeated multigene family would lead to junctional diversity.  相似文献   

4.
In primates, the tandemly repeated genes encoding U2 small nuclear RNA evolve concertedly, i.e. the sequence of the U2 repeat unit is essentially homogeneous within each species but differs somewhat between species. Using chromosome painting and the NGFR gene as an outside marker, we show that the U2 tandem array (RNU2) has remained at the same chromosomal locus (equivalent to human 17q21) through multiple speciation events over > 35 million years leading to the Old World monkey and hominoid lineages. The data suggest that the U2 tandem repeat, once established in the primate lineage, contained sequence elements favoring perpetuation and concerted evolution of the array in situ, despite a pericentric inversion in chimpanzee, a reciprocal translocation in gorilla and a paracentric inversion in orang utan. Comparison of the 11 kb U2 repeat unit found in baboon and other Old World monkeys with the 6 kb U2 repeat unit in humans and other hominids revealed that an ancestral U2 repeat unit was expanded by insertion of a 5 kb retrovirus bearing 1 kb long terminal repeats (LTRs). Subsequent excision of the provirus by homologous recombination between the LTRs generated a 6 kb U2 repeat unit containing a solo LTR. Remarkably, both junctions between the human U2 tandem array and flanking chromosomal DNA at 17q21 fall within the solo LTR sequence, suggesting a role for the LTR in the origin or maintenance of the primate U2 array.  相似文献   

5.
We have surveyed the tandemly repeated genes encoding U2 snRNA in a diverse panel of humans. We found only two polymorphisms within the U2 repeat unit: a SacI polymorphism (alleles SacI+ or SacI-) and a CT microsatellite polymorphism (alleles CT+ or CT-). Surprisingly, individual U2 tandem arrays are entirely SacI+ or SacI-, and entirely CT+ or CT-, although the SacI and CT alleles can occur in any combination. We also found that polymorphisms in the left and right junction regions flanking the tandem array fall into only two haplotypes (JL+ and JL-, JR+ and JR-). Most surprisingly, JL+ is always associated with JR+, and JL- with JR-. Thus individual U2 arrays do not exchange flanking markers, despite independent assortment and subsequent homogenization of the SacI and CT alleles within the U2 repeat units. We propose that the primary driving force for concerted evolution of the tandem U2 genes is intrachromosomal homogenization; interchromosomal genetic exchanges are much rarer, and reciprocal nonsister chromatid exchange apparently does not occur. Thus concerted evolution of the U2 tandem array occurs in situ along a chromosome lineage, and linkage disequilibrium between sequences flanking the U2 array may persist for long periods of time.  相似文献   

6.
I Cross  L Rebordinos 《Génome》2005,48(6):1116-1119
The 5S rRNA genes from 2 species of the Ostreidae family, Crassostrea angulata and Crassostrea gigas, were molecularly characterized. The genes were amplified, cloned, and sequenced. The results revealed a 5S rDNA tandem array with a nucleotide sequence in an inverted position within the nontranscribed spacer region that corresponded to the U2 small nuclear RNA (snRNA) gene. The sequence analysis indicated that both genes could be functionally active. The presence of the microsatellite (CT)n x (GA)n at the 3' end of both genes and the possible involvement of concerted evolution are discussed.  相似文献   

7.
Retrovirus-like sequences and their solitary (solo) long terminal repeats (LTRs) are common repetitive elements in eukaryotic genomes. We reported previously that the tandemly arrayed genes encoding U2 snRNA (the RNU2 locus) in humans and apes contain a solo LTR (U2-LTR) which was presumably generated by homologous recombination between the two LTRs of an ancestral provirus that is retained in the orthologous baboon RNU2 locus. We have now sequenced the orthologous U2-LTRs in human, chimpanzee, gorilla, orangutan, and baboon and examined numerous homologs of the U2-LTR that are dispersed throughout the human genome. Although these U2-LTR homologs have been collectively referred to as LTR13 in the literature, they do not display sequence similarity to any known retroviral LTRs; however, the structure of LTR13 closely resembles that of other retroviral LTRs with a putative promoter, polyadenylation signal, and a tandemly repeated 53-bp enhancer-like element. Genomic blotting indicates that LTR13 is primate-specific; based on sequence analysis, we estimate there are about 2,500 LTR13 elements in the human genome. Comparison of the primate U2-LTR sequences suggests that the homologous recombination event that gave rise to the solo U2-LTR occurred soon after insertion of the ancestral provirus into the ancestral U2 tandem array. Phylogenetic analysis of the LTR13 family confirms that it is diverse, but the orthologous U2-LTRs form a coherent group in which chimpanzee is closest to the humans; orangutan is a clear outgroup of human, chimpanzee, and gorilla; and baboon is a distant relative of human, chimpanzee, gorilla, and orangutan. We compare the LTR13 family with other known LTRs and consider whether these LTRs might play a role in concerted evolution of the primate RNU2 locus. Received: 29 September 1997 / Accepted: 16 January 1998  相似文献   

8.
Although the breast cancer susceptibility gene BRCA1 is one of the most extensively characterized genetic loci, much less is known about its upstream variable number tandem repeat element, the RNU2 locus. RNU2 encodes the U2 small nuclear RNA, an essential splicing element, but this locus is missing from the human genome assembly due to the inherent difficulty in the assembly of repetitive sequences. To fill the gap between RNU2 and BRCA1, we have reconstructed the physical map of this region by re-examining genomic clone sequences of public databases, which allowed us to precisely localize the RNU2 array 124 kb telomeric to BRCA1. We measured by performing FISH analyses on combed DNA for the first time the exact number of repeats carried by each of the two alleles in 41 individuals and found a range of 6-82 copies and a level of heterozygosity of 98%. The precise localisation of the RNU2 locus in the genome reference assembly and the implementation of a new technical tool to study it will make the detailed exploration of this locus possible. This recently neglected macrosatellite could be valuable for evaluating the potential role of structural variations in disease due to its location next to a major cancer susceptibility gene.  相似文献   

9.
Tandem repeat sequences are frequently associated with gene silencing phenomena. The Arabidopsis thaliana FWA gene contains two tandem repeats and is an efficient target for RNA-directed de novo DNA methylation when it is transformed into plants. We showed that the FWA tandem repeats are necessary and sufficient for de novo DNA methylation and that repeated character rather than intrinsic sequence is likely important. Endogenous FWA can adopt either of two stable epigenetic states: methylated and silenced or unmethylated and active. Surprisingly, we found small interfering RNAs (siRNAs) associated with FWA in both states. Despite this, only the methylated form of endogenous FWA could recruit further RNA-directed DNA methylation or cause efficient de novo methylation of transgenic FWA. This suggests that RNA-directed DNA methylation occurs in two steps: first, the initial recruitment of the siRNA-producing machinery, and second, siRNA-directed DNA methylation either in cis or in trans. The efficiency of this second step varies depending on the nature of the siRNA-producing locus, and at some loci, it may require pre-existing chromatin modifications such as DNA methylation itself. Enhancement of RNA-directed DNA methylation by pre-existing DNA methylation could create a self-reinforcing system to enhance the stability of silencing. Tandem repeats throughout the Arabidopsis genome produce siRNAs, suggesting that repeat acquisition may be a general mechanism for the evolution of gene silencing.  相似文献   

10.
11.
Cell line 101 is a thymidine kinase (TK)-positive derivative of Ltk- which contains ca. 20 copies of the herpes simplex virus TK gene organized in a tandem array. DNA methylation at three sites within the gene and flanking sequences was inversely correlated with expression: the sites were unmethylated in line 101, methylated in each of 4 TK-negative derivatives of 101, and unmethylated in each of 21 TK-positive derivatives derived from them. The same three sites were affected in most of the 20 copies of the TK gene, whereas other sites between them were not affected. Although the entire gene cluster was never lost, indicating that integration into the genome was stable, internal rearrangements occurred at a high frequency. The rearrangements had no obvious correlation with the state of methylation or with the expression of the genes.  相似文献   

12.
13.
14.
Aberrant methylation of CpG-dense islands in the promoter regions of genes is an acquired epigenetic alteration associated with the silencing of tumor suppressor genes in human cancers. In a screen for endogenous targets of methylation-mediated gene silencing, we identified a novel CpG island-associated gene, TMS1, which is aberrantly methylated and silenced in response to the ectopic expression of DNA methyltransferase-1. TMS1 functions in the regulation of apoptosis and is frequently methylated and silenced in human breast cancers. In this study, we characterized the methylation pattern and chromatin architecture of the TMS1 locus in normal fibroblasts and determined the changes associated with its progressive methylation. In normal fibroblasts expressing TMS1, the CpG island is defined by an unmethylated domain that is separated from densely methylated flanking DNA by distinct 5' and 3' boundaries. Analysis of the nucleoprotein architecture of the locus in intact nuclei revealed three DNase I-hypersensitive sites that map within the CpG island. Strikingly, two of these sites coincided with the 5'- and 3'-methylation boundaries. Methylation of the TMS1 CpG island was accompanied by loss of hypersensitive site formation, hypoacetylation of histones H3 and H4, and gene silencing. This altered chromatin structure was confined to the CpG island and occurred without significant changes in methylation, histone acetylation, or hypersensitive site formation at a fourth DNase I-hypersensitive site 2 kb downstream of the TMS1 CpG island. The data indicate that there are sites of protein binding and/or structural transitions that define the boundaries of the unmethylated CpG island in normal cells and that aberrant methylation overcomes these boundaries to direct a local change in chromatin structure, resulting in gene silencing.  相似文献   

15.
16.
DNA methylation affects the formation of active chromatin   总被引:88,自引:0,他引:88  
I Keshet  J Lieman-Hurwitz  H Cedar 《Cell》1986,44(4):535-543
  相似文献   

17.
Most cytosine residues are subject to methylation in the zeta-eta (zeta-eta) region of Neurospora crassa. The region consists of a tandem direct duplication of a 0.8-kilobase-pair element including a 5S rRNA gene. The repeated elements have diverged about 15% by the occurrence of numerous CG to TA mutations, which probably resulted from deamination of methylated cytosines. Most but not all common laboratory strains of N. crassa have methylated duplicated DNA at the zeta-eta locus. However, many strains of N. crassa and strains of N. tetrasperma, N. sitophila, and N. intermedia have one instead of two copies of the homologous DNA and it is not methylated. A cross of strains differing at the zeta-eta locus produced progeny which all had duplicated, methylated, or unique, unmethylated DNA, like the parental strains. We conclude that a signal causing unprecedented heavy DNA methylation is present in the zeta-eta region.  相似文献   

18.
19.
The late E2A promoter of adenovirus type 2 (Ad2) DNA can be inactivated by in vitro methylation of three 5'-CCGG-3' sequences at positions +23, +5, and -215 relative to the cap site in this promoter. This inactivation has been documented in transient expression experiments both in Xenopus laevis oocytes and in mammalian cells (K.-D. Langner, L. Vardimon, D. Renz, and W. Doerfler, Proc. Natl. Acad. Sci. USA 81:2950-2954, 1984; K.-D. Langner, U. Weyer, and W. Doerfler, Proc. Natl. Acad. Sci. USA 83:1598-1602, 1986). In the present study, in vitro-methylated or unmethylated promoter-gene assemblies were permanently fixed by integration in the hamster genome. In individually established cell lines, the degree of promoter methylation was correlated to gene activity. The pAd2E2AL-CAT construct, in which the late E2A promoter controls expression of the procaryotic chloramphenicol acetyltransferase (cat) gene, was fixed in BHK21 hamster cells by cotransfection with and selection for the pSV2-neo construct (P. J. Southern and P. Berg, J. Mol. Appl. Genet. 1:327-341, 1982) in which the early simian virus 40 promoter controls the gene for neomycin phosphotransferase. The pAd2E2AL-CAT construct was transfected in the unmethylated or in the 5'-CCGG-3' methylated form. The pSV2-neo plasmid was cotransfected in the unmethylated form. The stability of in vitro-imposed methylation patterns and cat gene expression were followed and correlated in a number of established cell lines which contained the constructs integrated in a non-rearranged configuration. The foreign DNA did not persist in the episomal state but was integrated, frequently in multiple tandems of the plasmid DNA. Among 19 cell lines established after transfecting the unmethylated pAd2E2AL-CAT construct, the late E2A promoter remained unmethylated (examined in 10 cell lines), and the cat gene was expressed in 18 cell lines. On the other hand, among 14 cell lines which were generated by transfection with the methylated construct, 7 cell lines did not express the cat gene, and the three 5'-CCGG-3' sequences in the late E2A promoter remained almost completely methylated. In five cell lines, the E2A promoter sequences were partly demethylated and the cat gene was expressed at low levels. Last, in two cell lines, demethylations were found to be extensive and strong cat expression was observed. It remained a question of considerable interest what factors determined the stability of methylation patterns that had been preimposed by in vitro methylation on specific sequences in a promoter, after this promoter was fixed by integration in the mammalian genome.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Imprinted genes harbor discrete regions which are differentially methylated in gametes; usually the final differential methylation patterns in adults are established during embryogenesis through modifications of the initial methylation patterns in gametes. Previous reports have shown that a 200-bp region termed region II within the CpG island of the mouse imprinted U2afbp-rs gene is methylated in oocytes but not in sperm, suggesting that this region is a center for the propagation of methylated CpGs on the maternal allele and is also a candidate for an imprinting control element. To determine whether region II is required for the imprinted methylation of this gene at the endogenous locus, we generated mice carrying a deletion of this region. We herein show that parental methylation differences still exist in the CpG island on the region II-deleted allele. These findings suggest that region II is dispensable for the imprinted methylation of the U2afbp-rs gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号