首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While it is widely accepted that most animals (Metazoa) do not have endogenous cellulases, relying instead on intestinal symbionts for cellulose digestion, the glycosyl hydrolase family 9 (GHF9) cellulases found in the genomes of termites, abalone, and sea squirts could be an exception. Using information from expressed sequence tags, we show that GHF9 genes (subgroup E2) are widespread in Metazoa because at least 11 classes in five phyla have expressed GHF9 cellulases. We also demonstrate that eukaryotic GHF9 gene families are ancient, forming distinct monophyletic groups in plants and animals. As several intron positions are also conserved between four metazoan phyla then, contrary to the still widespread belief that cellulases were horizontally transferred to animals relatively recently, GHF9 genes must derive from an ancient ancestor. We also found that sequences isolated from the same animal phylum tend to group together, and in some deuterostomes, GHF9 genes are characterized by substitutions in catalytically important sites. Several paralogous subfamilies of GHF9 can be identified in plants, and genes from primitive species tend to arise basally to angiosperm representatives. In contrast, GHF9 subgroup E2 genes are relatively rare in bacteria.  相似文献   

2.
白蚁自身及其后肠共生微生物可以分泌多种糖基水解酶用于分解木质纤维素.本研究选用1%木质素、1%羧甲基纤维素钠、1%山梨糖、1%果糖、1%葡萄糖及1%半乳糖6种糖基化合物溶液,诱导台湾乳白蚁Coptotermes formosanus糖基水解酶的分泌,进行了酶活测定.结果显示,FPA活力、内切葡聚糖酶EG、β-葡萄糖苷酶...  相似文献   

3.
To facilitate infection, pathogens deploy a plethora of effectors to suppress basal host immunity induced by exogenous microbe-associated or endogenous damage-associated molecular patterns (DAMPs). In this study, we have characterized family 17 glycosyl hydrolases of the tomato pathogen Cladosporium fulvum (CfGH17) and studied their role in infection. Heterologous expression of CfGH17-1 to 5 by potato virus X in different tomato cultivars showed that CfGH17-1 and CfGH17-5 enzymes induce cell death in Cf-0, Cf-1 and Cf-5 but not in Cf-Ecp3 tomato cultivars or tobacco. Moreover, CfGH17-1 orthologues from other phytopathogens, including Dothistroma septosporum and Mycosphaerella fijiensis, also trigger cell death in tomato. CfGH17-1 and CfGH17-5 are predicted to be β-1,3-glucanases and their enzymatic activity is required for the induction of cell death. CfGH17-1 hydrolyses laminarin, a linear 1,3-β-glucan with 1,6-β linkages. CfGH17-1 expression is down-regulated during the biotrophic phase of infection and up-regulated during the necrotrophic phase. Deletion of CfGH17-1 in C. fulvum did not reduce virulence on tomato, while constitutive expression of CfGH17-1 decreased virulence, suggesting that abundant presence of CfGH17-1 during biotrophic growth may release a DAMP that activates plant defence responses. Under natural conditions CfGH17-1 is suggested to play a role during saprophytic growth when the fungus thrives on dead host tissue, which is in line with its high levels of expression at late stages of infection when host tissues have become necrotic. We suggest that CfGH17-1 releases a DAMP from the host cell wall that is recognized by a yet unknown host plant receptor.  相似文献   

4.
Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-beta-1,6-N-acetyl-D-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved beta-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.  相似文献   

5.
Background: The increasing market demand for oligosaccharides has intensified the need for efficient biocatalysts. Glycosyl hydrolases (GHs) are still gaining popularity as biocatalyst for oligosaccharides synthesis owing to its simple reaction and high selectivity.

Purpose: Over the years, research has advanced mainly directing to one goal; to reduce hydrolysis activity of GHs for increased transglycosylation activity in achieving high production of oligosaccharides.

Design and methods: This review concisely presents the strategies to increase transglycosylation activity of GHs for oligosaccharides synthesis, focusing on controlling the reaction equilibrium, and protein engineering. Various modifications of the subsites of GHs have been demonstrated to significantly modulate the hydrolysis and transglycosylation activity of the enzymes. The clear insight of the roles of each amino acid in these sites provides a platform for designing an enzyme that could synthesize a specific oligosaccharide product.

Conclusions: The key strategies presented here are important for future improvement of GHs as a biocatalyst for oligosaccharide synthesis.  相似文献   


6.
Xylanases of glycosyl hydrolase family 30 (GH30) have been shown to cleave β-1,4 linkages of 4-O-methylglucuronoxylan (MeGXn) as directed by the position along the xylan chain of an α-1,2-linked 4-O-methylglucuronate (MeGA) moiety. Complete hydrolysis of MeGXn by these enzymes results in singly substituted aldouronates having a 4-O-methylglucuronate moiety linked to a xylose penultimate from the reducing terminal xylose and some number of xylose residues toward the nonreducing terminus. This novel mode of action distinguishes GH30 xylanases from the more common xylanase families that cleave MeGXn in accessible regions. To help understand this unique biochemical function, we have determined the structure of XynC in its native and ligand-bound forms. XynC structure models derived from diffraction data of XynC crystal soaks with the simple sugar glucuronate (GA) and the tetrameric sugar 4-O-methyl-aldotetrauronate resulted in models containing GA and 4-O-methyl-aldotriuronate, respectively. Each is observed in two locations within XynC surface openings. Ligand coordination occurs within the XynC catalytic substrate binding cleft and on the structurally fused side β-domain, demonstrating a substrate targeting role for this putative carbohydrate binding module. Structural data reveal that GA acts as a primary functional appendage for recognition and hydrolysis of the MeGXn polymer by the protein. This work compares the structure of XynC with a previously reported homologous enzyme, XynA, from Erwinia chrysanthemi and analyzes the ligand binding sites. Our results identify the molecular interactions that define the unique function of XynC and homologous GH30 enzymes.  相似文献   

7.
The diversity and abundance of glycosyl hydrolase family 5 (GH5) were studied in the North Atlantic Ocean. This family was chosen because of the large number of available sequences from cultured bacteria, the variety of substrates it targets, and the high number of similar sequences in the Sargasso Sea environmental genome database. Three clone libraries of a GH5 subcluster were constructed from the Mid-Atlantic Bight and the eastern and western North Atlantic Ocean. The two North Atlantic Ocean libraries did not differ from each other but both were significantly less diverse than the Mid-Atlantic Bight library. The abundance of GH5 genes estimated by quantitative PCR was positively correlated with chlorophyll concentrations in the eastern part of a transect from Fort Pierce, Florida, to the Azores and in a depth profile, suggesting that the supply of labile organic material selects for GH5-bearing bacteria in these waters. However, the data suggest that only <1% of all bacteria harbor the GH5 subcluster. These and other data suggest that the hydrolysis of polysaccharides requires complicated multi-enzyme systems.  相似文献   

8.
Furcatin hydrolase (FH) is a unique disaccharide-specific acuminosidase, which hydrolyzes furcatin (p-allylphenyl 6-O-beta-D-apiofuranosyl-beta-D-glucopyranoside (acuminoside)) into p-allylphenol and the disaccharide acuminose. We have isolated a cDNA coding for FH from Viburnum furcatum leaves. The open reading frame in the cDNA encoded a 538-amino acid polypeptide including a putative chloroplast transit peptide. The deduced protein showed 64% identity with tea leaf beta-primeverosidase, which is another disaccharide glycosidase specific to beta-primeverosides (6-O-beta-D-xylopyranosyl-beta-D-glucopyranosides). The deduced FH also shared greater than 50% identity with various plant beta-glucosidases in glycosyl hydrolase family 1. The recombinant FH expressed in Escherichia coli exhibited the highest level of activity toward furcatin with a Km value of 2.2 mm and specifically hydrolyzed the beta-glycosidic bond between p-allylphenol and acuminose, confirming FH as a disaccharide glycosidase. The FH also hydrolyzed beta-primeverosides and beta-vicianoside (6-O-alpha-L-arabinopyranosyl-beta-D-glucopyranoside) but poorly hydrolyzed beta-gentiobiosides (6-O-beta-D-glucopyranosyl-beta-d-glucopyranosides), indicating high substrate specificity for the disaccharide glycone moiety. The FH exhibited activity toward p-allylphenyl beta-D-glucopyranoside containing the same aglycone as furcatin but little activity toward the other beta-D-glucopyranosides. Stereochemical analysis using 1H NMR spectroscopy revealed that FH is a retaining glycosidase. The subcellular localization of FH was analyzed using green fluorescent protein fused with the putative N-terminal signal peptide, indicating that FH is localized to the chloroplast. Phylogenetic analysis of plant beta-glucosidases revealed that FH clusters with beta-primeverosidase, and this suggests that the disaccharide glycosidases will form a new subfamily in glycosyl hydrolase family 1.  相似文献   

9.
Utilization of a range of carbohydrates for growth by the hyperthermophile Pyrococcus furiosus was investigated by examining the spectrum of glycosyl hydrolases produced by this microorganism and the thermal labilities of various saccharides. Previously, P. furiosus had been found to grow in batch cultures on several alpha-linked carbohydrates and cellobiose but not on glucose or other beta-linked sugars. Although P. furiosus was not able to grow on any nonglucan carbohydrate or any form of cellulose in this study (growth on oat spelt arabinoxylan was attributed to glucan contamination of this substrate), significant growth at 98 degrees C occurred on beta-1,3- and beta-1,3-beta-1,4-linked glucans. Oligosaccharides generated by digestion with a recombinant laminarinase derived from P. furiosus were the compounds that were most effective in stimulating growth of the microorganism. In several cases, periodic addition of beta-glucan substrates to fed-batch cultures limited adverse thermochemical modifications of the carbohydrates (i.e., Maillard reactions and caramelization) and led to significant increases (as much as two- to threefold) in the cell yields. While glucose had only a marginally positive effect on growth in batch culture, the final cell densities nearly tripled when glucose was added by the fed-batch procedure. Nonenzymatic browning reactions were found to be significant at 98 degrees C for saccharides with degrees of polymerization (DP) ranging from 1 to 6; glucose was the most labile compound on a mass basis and the least labile compound on a molar basis. This suggests that for DP of 2 or greater protection of the nonreducing monosaccharide component may be a factor in substrate availability. For P. furiosus, carbohydrate utilization patterns were found to reflect the distribution of the glycosyl hydrolases which are known to be produced by this microorganism.  相似文献   

10.
11.
α-L-Rhamnosidases play an important role in the hydrolysis of glycosylated aroma compounds (especially terpenes) from wine. Although several authors have demonstrated the enological importance of fungal rhamnosidases, the information on bacterial enzymes in this context is still limited. In order to fill this important gap, two putative rhamnosidase genes (ram and ram2) from Pediococcus acidilactici DSM 20284 were heterologously expressed, and the respective gene products were characterized. In combination with a bacterial β-glucosidase, both enzymes released the monoterpenes linalool and cis-linalool oxide from a muscat wine extract under ideal conditions. Additionally, Ram could release significant amounts of geraniol and citronellol/nerol. Nevertheless, the potential enological value of these enzymes is limited by the strong negative effects of acidity and ethanol on the activities of Ram and Ram2. Therefore, a direct application in winemaking seems unlikely. Although both enzymes are members of the same glycosyl hydrolase family (GH 78), our results clearly suggest the distinct functionalities of Ram and Ram2, probably representing two subclasses within GH 78: Ram could efficiently hydrolyze only the synthetic substrate p-nitrophenyl-α-L-rhamnopyranoside (V(max) = 243 U mg(-1)). In contrast, Ram2 displayed considerable specificity toward hesperidin (V(max) = 34 U mg(-1)) and, especially, rutinose (V(max) = 1,200 U mg(-1)), a disaccharide composed of glucose and rhamnose. Both enzymes were unable to hydrolyze the flavanone glycoside naringin. Interestingly, both enzymes displayed indications of positive substrate cooperativity. This study presents detailed kinetic data on two novel rhamnosidases, which could be relevant for the further study of bacterial glycosidases.  相似文献   

12.
Production of acetone, butanol, ethanol, acetic acid, and butyric acid by three strains of anaerobic bacteria, which we identified as Clostridium acetobutylicum, was studied. The yield of acetone and alcohols in 6% flour medium amounted to 12.7-15 g/l with butanol constituting 51.0-55.6%. Activities of these strains towards xylan, beta-glucan, carboxymethylcellulose, and crystalline and amorphous celluloses were studied. C. acertobutylicum 6, C. acetoburylicum 7, and C. acertobutylicum VKPM B-4786 produced larger amounts of acetone and alcohols and displayed higher cellulase and hemicellulase activities than the type strain C. acetobutylicum ATCC 824. It was demonstrated that starch in the medium could be partially substituted with plant biomass.  相似文献   

13.
Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F. succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid rate have not been identified. However, the genome sequence of F. succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose digestion. The genome has a single family 45 beta-glucanase gene, and some of the enzymes in this family have good activity against native cellulose. The gene encoding the family 45 glycosyl hydrolase from F. succinogenes S85 was cloned into Escherichia coli JM109(DE3) using pMAL-c2 as a vector. Recombinant E. coli cells produced a soluble fusion protein (MAL-F45) that was purified on a maltose affinity column and characterized. MAL-F45 was most active on carboxymethylcellulose between pH 6 and 7 and it hydrolyzed cellopentaose and cellohexaose but not cellotetraose. It also cleaved p-nitrophenyl-cellopentose into cellotriose and p-nitrophenyl-cellobiose. MAL-F45 produced cellobiose, cellotriose and cellotetraose from acid swollen cellulose and bacterial cellulose, but the rate of this hydrolysis was much too low to explain the rate of cellulose digestion by growing cultures. Because the F. succinogenes S85 genome lacks dockerin and cohesin sequences, does not encode any known processive cellulases, and most of its endoglucanase genes do not encode carbohydrate binding modules, it appears that F. succinogenes has a novel mechanism of cellulose degradation.  相似文献   

14.
Because pathogens use diverse infection strategies, plants cannot use one-size-fits-all defence and modulate defence responses based on the nature of pathogens and pathogenicity mechanism. Here, we report that a rice glycoside hydrolase (GH) plays contrasting roles in defence depending on whether a pathogen is hemibiotrophic or necrotrophic. The Arabidopsis thaliana MORE1 (M agnaporthe o ryzae re sistance 1) gene, encoding a member of the GH10 family, is needed for resistance against Moryzae and Alternaria brassicicola, a fungal pathogen infecting A. thaliana as a necrotroph. Among 13 rice genes homologous to MORE1, 11 genes were induced during the biotrophic or necrotrophic stage of infection by M. oryzae. CRISPR/Cas9-assisted disruption of one of them (OsMORE1a) enhanced resistance against hemibiotrophic pathogens Moryzae and Xanthomonas oryzae pv. oryzae but increased susceptibility to Cochliobolus miyabeanus, a necrotrophic fungus, suggesting that OsMORE1a acts as a double-edged sword depending on the mode of infection (hemibiotrophic vs. necrotrophic). We characterized molecular and cellular changes caused by the loss of MORE1 and OsMORE1a to understand how these genes participate in modulating defence responses. Although the underlying mechanism of action remains unknown, both genes appear to affect the expression of many defence-related genes. Expression patterns of the GH10 family genes in A. thaliana and rice suggest that other members also participate in pathogen defence.  相似文献   

15.
滇金丝猴粪便微生物GH10家族木聚糖酶基因多样性   总被引:1,自引:1,他引:1  
【目的】分析滇金丝猴粪便微生物中GH10家族木聚糖酶的基因多样性。【方法】以野生和半圈养滇金丝猴粪便微生物宏基因组DNA为模板,用GH10木聚糖酶简并引物扩增木聚糖酶基因片段,利用p MD19-T载体构建细菌克隆文库并进行分析。【结果】从野生和半圈养滇金丝猴粪便微生物克隆文库中分别获得26、28条GH10木聚糖酶基因片段,与Gen Bank中木聚糖酶序列一致性分别介于58%-95%、63%-81%之间。比对分析表明,两种环境中的GH10木聚糖酶均来自厚壁菌门、拟杆菌门和未培养细菌。野生滇金丝猴粪便微生物的GH10木聚糖酶基因来源于Uncultured bacterium和Butyrivibrio、Bacteroides、Ruminococcus、Sphingobacterium、Chryseobacterium、Clostridium、Bacillus 7个属;而半圈养滇金丝猴粪便微生物的GH10木聚糖酶基因来源于Uncultured bacterium和Clostridium、Paludibacter、Sphingobacterium、Ruminococcus、Roseburia、Chryseobacterium 6个属,其中两种环境都存在来源于Ruminococcus、Clostridium、Chryseobacterium、Sphingobacterium的GH10木聚糖酶。【结论】滇金丝猴粪便微生物中含有丰富的GH10木聚糖酶基因,且野生和半圈养两种不同环境中GH10木聚糖酶基因的微生物来源存在一定差异。该研究丰富了动物胃肠道中GH10木聚糖酶基因多样性,并为新型木聚糖酶的开发和滇金丝猴胃肠道微生物资源的利用奠定了基础。  相似文献   

16.
Kikuchi T  Jones JT  Aikawa T  Kosaka H  Ogura N 《FEBS letters》2004,572(1-3):201-205
We have characterized a family of GHF45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. The absence of such genes from other nematodes and their similarity to fungal genes suggests that they may have been acquired by horizontal gene transfer (HGT) from fungi. The cell wall degrading enzymes of other plant parasitic nematodes may have been acquired by HGT from bacteria. B. xylophilus is not directly related to other plant parasites and our data therefore suggest that horizontal transfer of cell wall degrading enzymes has played a key role in evolution of plant parasitism by nematodes on more than one occasion.  相似文献   

17.
Glycosyl hydrolases are a vast group of enzymes that share a common topology at their active site with two acidic residues that are responsible for activity. In spite of their similarity, they exhibit a wide range of pH optima that must depend on other factors. Using structural and mechanistic knowledge about glycosyl hydrolases from families 7, 10, and 16, we have formulated a new mathematical model that can include not only the ionization behavior of the catalytic residues but also as many ionizable residues as desired in the active site. In addition, the model can incorporate electrostatic influences via acid dissociation equilibrium constants and chemical relationships such as hydrogen bonds. The results of the simulations indicate a clear shift in the pH dependence of activity for the enzymes only when a close interrelation (hydrogen bond) between the catalytic and auxiliary residues in the active site is taken into account. This explains the observations from mutagenesis studies that show this type of shift and cannot be explained by a purely electrostatic interaction theory. Moreover, the presence of the kind of chemical interaction proposed could provide stabilization of the activity in the presence of environmental, structural, pH and electrostatic variations. These findings and the implications for the design of new mutagenesis strategies are discussed. The results suggest a way to modify, via site-directed mutagenesis, the acid dissociation of one of the catalytic residues in the active site independently of the other, which could have clear advantages over the purely electrostatic modifications that usually affect both residues simultaneously.  相似文献   

18.
Production of acetone, butanol, ethanol, acetic acid, and butyric acid by three strains of anaerobic bacteria, which we identified as Clostridium acetobutylicum, was studied. The yield of acetone and alcohols in 6% wheat flour medium amounted to 12.7–15 g/l with butanol constituting 51.0–55.6%. Activities of these strains towards xylan, β-glucan, carboxymethylcellulose, and crystalline and amorphous celluloses were studied. C. acetobutylicum 6, C. acetobutylicum 7, and C. acetobutylicum VKPM B-4786 produced larger amounts of acetone and alcohols and displayed higher cellulase and hemicellulase activities than the type strain C. acetobutylicum ATCC 824 in lab-scale butch cultures. It was demonstrated that starch in the medium could be partially substituted with plant biomass.  相似文献   

19.
Changes in the activity levels of kidney and urinary glycoprotein : glycosyl transferases and acid hydrolases were studied in ethylene glycol-induced hyperoxaluria and glycerol-induced renal failure in the rat. Hyperoxaluria resulted in increased urine activity levels of several glycosidases and acid phosphatase; changes in tissue levels of neuraminidase and CMP-sialic acid synthetase were also found. In the glycerol experimental model, there was stimulation in the activity of collagen : glycosyl transferase and neuraminidase in the rat kidney.  相似文献   

20.
The crystal structure of a chitinase from Carica papaya has been solved by the molecular replacement method and is reported to a resolution of 1.5 A. This enzyme belongs to family 19 of the glycosyl hydrolases. Crystals have been obtained in the presence of N-acetyl- d-glucosamine (GlcNAc) in the crystallization solution and two well-defined GlcNAc molecules have been identified in the catalytic cleft of the enzyme, at subsites -2 and +1. These GlcNAc moieties bind to the protein via an extensive network of interactions which also involves many hydrogen bonds mediated by water molecules, underlying their role in the catalytic mechanism. A complex of the enzyme with a tetra-GlcNAc molecule has been elaborated, using the experimental interactions observed for the bound GlcNAc saccharides. This model allows to define four major substrate interacting regions in the enzyme, comprising residues located around the catalytic Glu67 (His66 and Thr69), the short segment E89-R90 containing the second catalytic residue Glu89, the region 120-124 (residues Ser120, Trp121, Tyr123, and Asn124), and the alpha-helical segment 198-202 (residues Ile198, Asn199, Gly201, and Leu202). Water molecules from the crystal structure were introduced during the modeling procedure, allowing to pinpoint several additional residues involved in ligand binding that were not previously reported in studies of poly-GlcNAc/family 19 chitinase complexes. This work underlines the role played by water-mediated hydrogen bonding in substrate binding as well as in the catalytic mechanism of the GH family 19 chitinases. Finally, a new sequence motif for family 19 chitinases has been identified between residues Tyr111 and Tyr125.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号