首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aloni B  Daie J  Wyse RE 《Plant physiology》1986,82(4):962-966
The effect of gibberellic acid (GA3) on sucrose export from source leaves was studied in broad bean (Vicia faba L.) plants trimmed of all but one source and one sink leaf. GA3 (10 micromolar) applied to the source leaf, enhanced export of [14C]sucrose (generated by 14CO2 fixation) to the root and to the sink leaf. Enhanced export was observed with GA treatments as short as 35 minutes. When GA3 was applied 24 hours prior to the 14CO2 pulse, the enhancement of sucrose transport toward the root was abolished but transport toward the upper sink leaf was unchanged. The enhanced sucrose export was not due to increased photosynthetic rate or to changes in the starch/sucrose ratio within the source leaf; rather, GA3 increased the proportion of sucrose exported. After a 10-min exposure to [14C]GA3, radioactivity was found only in the source leaf. Following a 2 hour exposure to [14C]GA3, radioactivity was distributed along the entire stem and was present in both the roots and sink leaf. Extraction and partitioning of GA metabolites by thin layer chromatography indicated that there was a decline in [14C]GA3 in the lower stem and root, but not in the upper stem. This pattern of metabolism is consistent with the disappearance of the GA3 effect in the lower stem with time after treatment. We conclude that in the short term, GA3 enhances assimilate export from source leaves by increasing phloem loading. In the long term (24 hours), the effect of GA3 is outside the source leaf. GA3 accumulates in the apical region resulting in enhanced growth and thus greater sink strength. Conversely, GA3 is rapidly metabolized in the lower stem thus attenuating any GA effect.  相似文献   

2.
Apoplastic pH of intact leaves of Vicia faba as influenced by light   总被引:3,自引:0,他引:3  
The fluorochrome FITC-dextran was used to measure the effectof light on the apoplastic pH of intact Vicia faba leaves withthe ratio imaging technique. In darkadapted leaves the apoplasticpH varied depending on the leaf between 5.2 and 5.9. Red light(660 nm, 4–12 W m–2) leads to multiphasic responses:in the first seconds an alkalinization ({small tilde}0.3 pHunits), and thereafter an acidification of the leaf apoplast({small tilde}0.4 pH units) were observed. Both effects couldbe inhibited by DCMU. While variation of CO2 concentration revealedno effect on light-induced apoplastic pH changes, a decreasein O2 concentration decreased the effect. On the basis of ourdata it is suggested that the influence of photosynthesis onplasmalemma H+ ATPase is responsible for the observed effects,rather than altered CO2 uptake. Key words: Leaf apoplast, apoplastic pH, light, ratio imaging, pH-sensitive fluorescent dye, Vicia fab  相似文献   

3.
Salinity affects water availability in the soil and subsequently the plant uptake capacity. Upon exposure to salt stress, leaf growth in monocot plants has been shown to be reduced instantaneously, followed by a gradual acclimation. The growth reactions are caused by an initial water deficit and an accompanied osmotic effect, followed by an IAA-induced sequestration of protons into the apoplast that increases leaf growth again as explained by the acid growth theory. In this study, we investigated the dynamics of growth reactions and apoplastic pH in leaves of the dicot Vicia faba in the presence of NaCl during the initiation of salt stress. Concurrent changes in apoplastic pH were detected by ratiometric fluorescence microscopy using the fluorescent dye fluorescein tetramethylrhodamine dextran. To elucidate the possible relation between the dynamics of leaf growth and apoplastic pH, results of the ratio imaging technique were combined with an in vivo growth analysis imaging approach. Leaf growth rate of V. faba was highest in the dusk and the early night phase; at this time a concomitant decrease of the apoplastic pH was observed. Under salinity, the apoplastic pH in leaves of V. faba increased with a simultaneous decrease of leaf growth towards increasing developmental stages, but with complex aberrations in the 24-h-leaf-growth pattern compared to control leaves. In conclusion, these results show that salt stress leads to an increase in apoplastic pH and to a declined leaf growth activity with complex 24-h-interactions of growth and pH in V. faba.  相似文献   

4.
The apoplast of mature leaves excised from broadbean (Vicia faba L.) plants was infiltrated with 2 millimolar p-chloromercuribenzenesulfonic acid (PCMBS) via the transpiration stream, and the ability of the tissues to take up sugars was tested. An infiltration time of 75 minutes was sufficient to obtain a maximal (75%) inhibition of exogenous [14C]sucrose (1 millimolar) uptake. This infiltration affected neither CO2 assimilation nor the transmembrane potential difference of leaf cells but strongly inhibited phloem loading of endogenous [14C] assimilates. The study of the symplastic relations between the different cell types of the mature leaf showed that the density of the plasmodesmata is generally very low in comparison with other species investigated so far, particularly when considering the mesophyll/bundle sheath and the bundle sheath/phloem cells connections, as well as the connections of the transfer cell-sieve tube complex with the surrounding cells. These three successive barriers therefore strongly limit the possibilities of symplastic transit of the assimilates to the conducting cells. The comparison of the densities of plasmodesmata in an importing and an exporting leaf suggests that the maturation of the leaf is characterized by a marked symplastic isolation of the phloem, and, within the phloem itself, by the isolation of the conducting complex. As a consequence, these physiological and cytological data demonstrate the apoplastic nature of loading in the mature leaf of Vicia faba, this species undoubtedly presenting a typical model for apoplastic loading.  相似文献   

5.
Leaves of cotton (Gossypium hirsutum L.) were subjected to overpressures in a pressure chamber, and the exuded sap was collected and analyzed. The exudate contained low concentrations of solutes that were abundant in total leaf extracts, and photosynthetic rates and stomatal conductance were completely unaffected by a cycle of pressurization and rehydration. These criteria and others indicate that the experimental techniques inflicted no damage upon the leaf cells. The pH and abscisic acid (ABA) content of the apoplastic fluid both increased greatly with pressure-induced dehydration. Although ABA concentrations did not reach a steady state, the peak levels were above 1 micromolar, an order of magnitude greater than bulk ABA concentrations of the leaf blades. Treatment of leaves with fusicoccin decreased the K+ concentration, greatly reduced the pH rise, and completely eliminated the increase in ABA in the apoplast upon dehydration. When water-stressed leaves were pressurized, the pH of the exuded sap was increased by 0.2 units per 1 megapascal decrease in initial leaf water potential. Buffer capacity of the sap was least in the pH range of interest (6.5-7.5), allowing extremely small changes in H+ fluxes to create large changes in apoplastic pH. The data indicate that dehydration causes large changes in apoplastic pH, perhaps by effects on ATPases; the altered pH then enhances the release of ABA from mesophyll cells into the apoplastic fluid.  相似文献   

6.
γ-Guanidinobutyraldehyde dehydrogenase was purified 27-fold in 40% yield from extracts of Vicia faba leaves. High specificity exist only for γ-guanidinobutyraldehyde and γ-aminobutyraldehyde; the Km value was 3.4 micromolar for γ-guanidinobutyraldehyde, 25 micromolar for γ-aminobutyraldehyde, and 84 micromolar (case of γ-guanidinobutyraldehyde) for NAD, respectively. The enzyme had a molecular weight of approximately 83,000. Optimal pH and temperature for activity were 9.5 and 45°C, respectively. The enzyme was inhibited strongly by p-chloromercuribenzoate, N-ethylmaleimide, and zincon (2-carboxy-2′-hydroxy-5′-sulfoformazylbenzene).  相似文献   

7.
KASSAM  A. H. 《Annals of botany》1975,39(2):265-271
Wilting of leaves of Vicia faba L., which occurs when the pressurepotential (p) is zero, and the leaf-water potential () at wiltingboth depend entirely upon the solute potential at incipientplasmolysis (so) and not on soil-water status. Wilting in V.faba is acropetal; this is consistent with the hypothesis thatthere is a gradient of decreasing so up the plant and that wateris transferred from the lower to the upper leaves, hasteningthe overall water loss from the lower leaves to the point whenp is zero. The gradient in so up the plant is of the order of3–8 bar. It is proposed that wilting when p>0 (i.e. > so) shouldbe ‘apparent wilting’ and that when p0 (i.e. so),‘true wilting’.  相似文献   

8.
H+参与茉莉酸调控蚕豆气孔运动的信号转导   总被引:2,自引:0,他引:2  
以BCECF-AM为pH的荧光探针,结合激光共聚焦扫描显微技术,研究H 可能参与茉莉酸(JA)调控气孔运动信号转导途径的结果表明,0.1~100μmol·L~(-1)浓度的(-)JA可诱导蚕豆气孔关闭,在引起气孔孔径改变之前,(-)JA能引起蚕豆保卫细胞胞质的碱化;而(±)JA可诱导气孔适当开放,它未引起蚕豆保卫细胞胞质中pH的明显改变。药理学实验证明,质膜上质子泵的抑制剂矾酸钠能减弱(-)JA诱导气孔关闭的作用;而质膜上质子泵的激活剂壳梭孢菌素(fusicoccin)基本上未改变(±)JA的作用趋势。(-)JA和(±)JA刺激保卫细胞胞质Ca2 变化则表现出不同趋势。说明不同异构体形式的JA在调节气孔运动中的作用和信号转导途径有所不同。  相似文献   

9.
Energetics of Amino Acid Uptake by Vicia faba Leaf Tissues   总被引:2,自引:5,他引:2  
The uptake of [U-14C]threonine and of (α-14C]aminoisobutyrate (α-AIB) by Vicia faba leaf discs is strongly pH dependent (optimum: pH 4.0) and exhibits biphasic saturation kinetics. Kinetics of α-AIB uptake at different pH values indicate that acidic pH values decrease the Km of the carriers while the maximal velocity remains nearly unaffected. Similar results were obtained for both system 1 (from 0.5 to 5 millimolar) and system 2 (from 20 to 100 millimolar).

After addition of amino acids to a medium containing leaf fragments, alkalinizations depending both on the amino acid added and on its concentration have been recorded.

The effects of compounds which increase (fusicoccin) or decrease (uncouplers, ATPase inhibitors, high KCl concentrations) the protonmotive force were studied both on the acidification of the medium and on amino acid uptake by the tissues. There is a close relationship between the time required for the effect of these compounds on the acidification and that needed for inhibition of uptake.

Studies with thiol inhibitors show that 0.1 millimolar N-ethylmaleimide preferentially inhibits uptake by the mesophyll whereas 0.1 millimolar parachloromercuribenzenesulfonate affects rather uptake by the veins.

New evidence was found which added to the electrophysiological data already supporting the occurrence of proton amino acid symport in leaf tissues, particularly in the veins.

  相似文献   

10.
11.
Some Properties of the Arginine Decarboxylase in Vicia faba Leaves   总被引:1,自引:0,他引:1  
Growth of Vicia faba seedlings is accompanied by a rapid increasein arginine decarboxylase (EC 4.1.1.19 [EC] ) in the leaves and epicotyl.Increased enzyme activity was observed under saline conditionsin the presence of NaCl and with osmotic stress by mannitol.The partially purified enzyme (about 86-fold) readily decarboxylatedL-arginine, while D-arginine, L-homoarginine, L-ornithine andL-lysine were decarboxylated very slowly, and L-citrulline andL-glutamic acid were not decarboxylated. The Km value was 5.8?10–4M for L-arginine. The optimal pH and temperature for activitywere 8.5 and 45?C, respectively. p-Chloromercuribenzoate andN-ethylmaleimide were effective inhibitors of the enzyme. Inhibitionby spermidine, putrescine and agmatine suggested a possiblefeed-back mechanism in the pathway of polyamine biosynthesis. (Received October 11, 1983; Accepted February 24, 1984)  相似文献   

12.
Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but much less is known about its roles and mechanisms in plant signaling. Herein, we report that water deficit-induced ABA accumulation could be regulated by ascorbic acid (AA)-controlled redox status in leave apoplast. The AA content in non-stressed leaves was approximately 3 umol/g FW, corresponding to a mean concentration of 3 mmol/L in a whole cell. Because AA is mainly localized in the cytosol and chloroplasts, the volume of which is much smaller than that of the whole cell, AA content in cytosolic and chloroplast compartments should be much higher than 3 mmol/L. Water deficit-induced ABA accumulation in both leaf and root tissues of maize seedlings was significantly inhibited by AA and reduced glutathione (GSH) at concentrations of 500 umol/L and was completely blocked by 50 mmol/L AA and GSH. These results suggest that the AA-induced inhibition of ABA accumulation should not occur at sites where AA exists in high concentrations. Although water deficit led to a small increase in the dehydroascorbic acid (DHA) content, no significant changes in AA content were observed in either leaf or root tissues. When compared with the whole leaf cell, the AA content in the apoplastic compartment was much lower (i.e. approximately 70 nmol/g FW, corresponding to 0.7 mmol/L). Water deficit induced a significant decrease (approximately 2.5-fold) in the AA content and an increase (approximately 3.4-fold) in the DHA content in the apoplastic compartment, thus leading to a considerably decreased redox status there, which may have contributed to the relief of AA-induced inhibition of ABA accumulation, alternatively, promoting water deficit-induced ABA accumulation. Reactive oxygen species (ROS) could not mimic water deficit in inducing ABA accumulation, suggesting that the inhibition of ABA accumulation by AA or GSH was not related to their ROS-scavenging ability. The results of the present study suggest that the redox status in the apoplastic compartment, as determined by AA and DHA, may play a vital role in the regulation of the signaling process for water deficit-induced ABA accumulation.  相似文献   

13.
A vacuum infiltration technique was developed that enabled the extraction of apoplastic solution with very little cytoplasmic contamination as evident from a malate dehydrogenase activity of less than 1% in the apoplastic solution relative to that in bulk leaf extracts. The volume of apoplastic water, a prerequisite for determination of the concentration of apoplastic solutes, was determined by vacuum infiltration of indigo carmine with subsequent analysis of the dilution of the dye in apoplastic extracts. Indigo carmine was neither transported across the cell membrane nor significantly adsorbed to the cell walls, ensuring reproducible (SE < 2%) and precise determination of apoplastic water. Analysis of leaves from four different positions on senescing Brassica napus plants showed a similar apoplastic pH of 5.8, while apoplastic NH4+ increased from 1.1 mM in lower leaves to 1.3 mM in upper leaves. Inhibition of glutamine synthetase in young B. napus plants resulted in increasing apoplastic pH from 6.0 to 6.8 and increasing apoplastic NH4+ concentration from 1.0 to 25.6 mM, followed by a marked increase in NH3 emission. Calculating NH3 compensation points for B. napus plants on the basis of measured apoplastic H+ and NH4+ concentrations gave values ranging from 4.3 to 5.9 nmol NH3 mol-1 air, consistent with an estimate of 5.3 [plus or minus] 3.6 nmol NH3 mol-1 air obtained by NH3 exchange experiments in growth chambers. A strong linear relationship was found between calculated NH3 compensation points and measured NH3 emission rates in glutamine synthetase-inhibited plants.  相似文献   

14.
15.
以蚕豆下表皮为材料研究了水杨酸、(±)茉莉酸和乙烯对气孔运动的影响及其相互关系。结果表明,在一定范围内,水杨酸和乙烯利都可诱导气孔关闭,并且二者能够相互增强其作用强度;(±)茉莉酸能够促进气孔开度增大,加入(±)茉莉酸减弱了乙烯利对气孔运动的影响,(±)茉莉酸和乙烯利存在拮抗效应。降低内源乙烯的水平可以增强(±)茉莉酸促进气孔张开的作用、降低水杨酸的诱导气孔关闭效应。而水杨酸和(±)茉莉酸之间的关系比较复杂。  相似文献   

16.
水孔蛋白的抑制剂HgCl2可明显抑制壳梭孢菌素(FC)和微丝骨架的解聚剂细胞松弛素D(CD)对蚕豆保卫细胞原生质体膨胀的诱导作用,而对微丝骨架的稳定剂鬼笔环肽(phalloidin)的抑制作用影响不明显。这表明水孔蛋白可能介导了FC和微丝骨架对气孔运动的调节。  相似文献   

17.
Diamine oxidase (EC 1.4.3.6 [EC] ) from the leaves of Vicia faba waspurified to homogeneity by polyacrylamide gel electrophoresis.The molecular weight estimated by Sephadex G-200 gel filtrationwas about 126,000. Sodium dodecyl sulfate gel electrophoresisgave a single band at the molecular weight of 74,000. The isoelectricpoint was at pH 7.2. The enzyme contained two copper atoms permole of enzyme. Inhibition with phenylhydrazine showed thatthe Vicia enzyme contains one mole of the carbonyl group permole of the enzyme. The amino acid composition of the enzymealso is described. (Received February 23, 1981; Accepted April 7, 1981)  相似文献   

18.
Soluble sugars were extracted by low speed centrifugation fromthe apoplast of leaves of barley (Hordeum distichum L.) infiltratedwith water. Infection of the leaf with the brown rust fungus(Puccinia hordeii) resulted in a reduction in the concentrationof sucrose, glucose and fructose in the apoplast. Sugars werepresent in an apoplastic space occupying 12 and 17 cm3 m–2of leaf area in healthy and infected tissue, respectively. Uptakeof hexoses by intercellular hyphae is suggested as a cause ofthis reduction. The pH of apoplastic sap extracted from rust-infectedleaves was increased to pH 7·3 from pH 6·6 incontrols. The effect of a reduced apoplastic sugar pool andincreased pH on export from infected leaves is discussed. Key words: Apoplast, barley (Hordeum distichum L.), brown rust (Puccinia hordeii Otth.), pH, sucrose, hexose  相似文献   

19.
Petiole heat-girdle treatments (followed by a 5 min 14CO2 assimilation)were performed on mature leaves of Vicia faba, in order to assesstheir effect on the partitioning of photo-assimilates to theminor vein phloem. Whole leaf autoradiographic evidence indicateda high leaf-to-leaf variation in the image intensity over theminor veins (relative to the mesophyll/epidermal background)in both control and heat-girdled groups of leaves. The averagedegree of minor vein labelling in heat-girdled leaves, however,was found to be significantly lower than that in controls. Comparativeassessment of vein labelling was based on microscopic densityreadings of silver grains over veinal and interveinal regionsin autoradiographic images. Investigations into the cause ofthis alteration in vein labelling indicated no involvement ofan inhibition of apoplasmic phloem loading, as both heat-girdledand control leaves of Vicia were shown to have comparable minorvein uptake of exogenously supplied 14C-sucrose. Heat-girdlingwas shown, however, to increase significantly the partitioningof recently fixed carbon into the insoluble (mainly starch)fraction relative to the ethanol-soluble fraction, within 12min of the treatment. We suggest that this carbon partitioningchange can primarily account for the change in vein labelling,since an increase in the insoluble fraction would result in(1) more 14C-activity remaining in the leaf mesophyll and (2)less 14C-activity going into the mesophyll export pool, andthus, less 14C-sucrose being transferred to the minor vein region.Additionally, although leaf export was completely halted inheat-girdled leaves, 14C-activity was found within the majorveins as far as the point of petiole heat-girdling (followinga 5 min assimilation and 4 h chase). Apparently, continued (butlimited) solution flow within the sieve elements is maintainedby transport pathway unloading within the treated leaves. Key words: Phloem loading, carbon partitioning, heat-girdle, Vicia faba  相似文献   

20.
Kinetin at physiological concentrations causes significant reduction of GA3-promoted growth in excised Avena stem segments. Kinetin is therefore considered to be a gibberellin-antagonist in this system. A Lineweaver-Burke plot reveals that kinetin acts non-competitively with GA3. The kinetin inhibition of GA3-promoted growth can be seen within 6 hours. It was found that soluble protein is markedly increased by kinetin in the tissue during the first 3 hours, thus preceding the inhibition of GA3-promoted growth by several hours. At the cellular level, kinetin negated the blocking effect of GA3 on cell division in the intercalary meristem portions of these segments. In fact, kinetin promotes both lateral and longitudinal cell divisions in intercalary meristem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号