首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progesterone acts at a plasma membrane receptor on the Rana oocyte to initiate meiosis. A cascade of lipid messengers occurs within seconds, followed by sequential changes in membrane phospholipid composition. We now show that progesterone binding to the plasma membrane increases continuously over the first 4 h. Subsequently, about 60% of the total plasma membrane and > 90% of membrane-bound progesterone, ouabain binding sites, and Na/K-ATPase activity are internalized. Until the completion of membrane internalization, oocytes must be continuously exposed to nanomolar concentrations of exogenous progesterone for meiosis to continue. The membrane-bound progesterone remains unchanged, whereas microinjected [(3)H]progesterone is rapidly metabolized. We find that progesterone and the plant steroid ouabain compete for one of two ouabain binding sites on the oocyte surface. Ouabain blocks progesterone action and inhibits subsequent meiosis if added at any time during the first 4-5 h. Western blots of SDS/PAGE extracts of isolated oocyte plasma membranes contain a -110 kDa band which binds an antibody to the steroid-binding c-terminal domain in rat and human PR. The number of binding sites and K(d) for progesterone binding to the plasma membrane is comparable to those for low-affinity ouabain binding to the alpha-subunit of the Na/K-ATPase (112 kDa). Our results suggest that progesterone binding to the ouabain binding site on the N-terminal region of the alpha-subunit of Na/K-ATPase may modulate early plasma membrane events over the first 4-6 h. Progesterone may thus act in part through the plasma membrane Na/K-ATPase signaling system.  相似文献   

2.

Background  

Progesterone binding to the surface of the amphibian oocyte initiates the meiotic divisions. Our previous studies with Rana pipiens oocytes indicate that progesterone binds to a plasma membrane site within the external loop between the M1 and M2 helices of the α-subunit of Na/K-ATPase, triggering a cascade of lipid second messengers and the release of the block at meiotic prophase. We have characterized this site, using a low affinity ouabain binding isoform of the α1-subunit.  相似文献   

3.
Liposomes characterized by membranes featuring diverse fluidity (liquid-crystalline and/or gel phase), prepared from egg yolk lecithin (EYL) and dipalmitoylphosphatidylcholine (DPPC), were doped with selected metalloporphyrins and the time-related structural and dynamic changes within the lipid double layer were investigated. Porphyrin complexes of Mg(II), Mn(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and the metal-free base were embedded into the particular liposome systems and tested for 350 h at 24°C using the electron spin resonance (ESR) spin probe technique. 5-DOXYL, 12-DOXYL, and 16-DOXYL stearic acid methyl ester spin labels were applied to explore the interior of the lipid bilayer. Only the 16-DOXYL spin probe detected evident structural changes inside the lipid system due to porphyrin intercalation. Fluidity of the lipid system and the type of the porphyrin complex introduced significantly affected the intermolecular interactions, which in certain cases may result in self-assembly of metalloporphyrin molecules within the liposome membrane, reflected in the presence of new lines in the relevant ESR spectra. The most pronounced time-related effects were demonstrated by the EYL liposomes (liquid-crystalline phase) when doped with Mg and Co porphyrins, whereas practically no spectral changes were revealed for the metal-free base and both the Ni and Zn dopants. ESR spectra of the porphyrin-doped gel phase of DPPC liposomes did not show any extra lines; however, they indicated the formation of a more rigid lipid medium. Electronic configuration of the porphyrin’s metal center appeared crucial to the degree of molecular reorganization within the phospholipid bilayer system.  相似文献   

4.
Morrill GA  Kostellow AB  Askari A 《Steroids》2012,77(11):1160-1168
Progesterone and its polar metabolite(s) trigger the meiotic divisions in the amphibian oocyte through a non-genomic signaling system at the plasma membrane. Published site-directed mutagenesis studies of ouabain binding and progesterone-ouabain competition studies indicate that progesterone binds to a 23 amino acid extracellular loop of the plasma membrane α-subunit of Na/K-ATPase. Integral membrane proteins such as caveolins are reported to form Na/K-ATPase-peptide complexes essential for signal transduction. We have characterized the progesterone-induced Na/K-ATPase-caveolin (CAV-1)-steroid 5α-reductase interactions initiating the meiotic divisions. Peptide sequence analysis algorithms indicate that CAV-1 contains two plasma membrane spanning helices, separated by as few as 1-2 amino acid residues at the cell surface. The CAV-1 scaffolding domain, reported to interact with CAV-1 binding (CB) motifs in signaling proteins, overlaps transmembrane (TM) helix 1. The α-subunit of Na/K-ATPase (10 TM helices) contains double CB motifs within TM-1 and TM-10. Steroid 5α-reductase (6 TM helices), an initial step in polar steroid formation, contains CB motifs overlapping TM-1 and TM-6. Computer analysis predicts that interaction between antipathic strands may bring CB motifs and scaffolding domains into close proximity, initiating allostearic changes. Progesterone binding to the α-subunit may thus facilitate CB motif:CAV-1 interaction, which in turn induces helix-helix interaction and generates both a signaling cascade and formation of polar steroids.  相似文献   

5.
Fluidity of the plasma membrane of Trypanosoma brucei brucei has been examined with fluorescence and electron spin resonance spectroscopy. Fluorescent probes 1,6-diphenyl-1,3,5-hexatriene and 8-anilino-1-naphthalene sulfonate and the spin label probe 5-doxyl stearate have been employed to examine fluidity under a variety of conditions. The temperature dependence of 8-anilino-1-naphthalene sulfonate polarization and of the order parameter S for 5-doxyl stearate reveals phase alterations near 30 C. 1,6-Diphenyl-1,3,5-hexatriene polarization shows that proteolysis of the surface glycoprotein with trypsin increases fluidity but treatment with human serum which is trypanocidal produces no detectable change in membrane fluidity.  相似文献   

6.
Summary Progesterone initiates the resumption of the meiotic divisions in the amphibian oocyte. Depolarization of theRana pipiens oocyte plasma membrane begins 6–10 hr after exposure to progesterone (1–2 hr before nuclear breakdown). The oocyte cytoplasm becomes essentially isopotential with the medium by the end of the first meiotic division (20–22 hr). Voltage-clamp studies indicate that the depolarization coincides with the disappearance of an electrogenic Na+, K+-pump, and other electrophysiological studies indicate a decrease in both K+ and Cl conductances of the oocyte plasma membrane. Measurement of [3H]-ouabain binding to the plasma-vitelline membrane complex indicates that there are high-affinity (K d-4.2×10–8 m), K+-sensitive ouabain-binding sites on the unstimulated (prophase-arrest) oocyte and that ouabain binding virtually disappears during membrane depolarization. [3H]-Leucine incorporation into the plasma-vitelline membrane complex increased ninefold during depolarization with no significant change in uptake or incorporation into cytoplasmic proteins or acid soluble pool(s). This together with previous findings suggests that progesterone acts at a translational level to produce a cytoplasmic factor(s) that down-regulates the membrane Na+, K+-ATPase and alters the ion permeability and transport properties of both nuclear and plasma membranes.  相似文献   

7.
Progesterone is the physiological stimulus that acts at the amphibian oocyte plasma membrane to induce the meiotic divisions. Rana oocytes were preincubated with [3H]-arachidonic acid, [3H]-methionine and/or [14C]choline. Total and plasma membrane phospholipids were monitored during the first 2 h after induction with progesterone. A transient increase in methylation of phosphatidylethanolamine during the first 10 minutes coincided with an increased Ca2+ efflux and was followed by increased arachidonic acid incorporation into phosphatidylcholine during a period of increasing membrane conductance. The labeled phospholipids disappeared sequentially 5-90 min after the hormone stimulus, suggesting that activation of phospholipases A2 and/or C occur as part of a cascade of membrane events.  相似文献   

8.
I I Vlasova 《Biofizika》1999,44(2):272-280
The effect of low-density lipoproteins on the structure of platelet plasma membrane was studied by electron paramagnetic resonance spectroscopy. Low-density lipoproteins were incubated with platelet rich plasma at a volume ratio 1:1. Plasma incubated with buffer served as a control. After incubation, the fluidity of platelet plasma membrane was determined by electron spin resonance probes 5-doxylstearate and 16-doxylstearate, which were immobilized in membranes of cells subjected to triple precipitation. Significant differences in the order parameter S, which characterizes the spectrum of the 5-doxylstearate probe, for samples incubated with the buffer and oxidized low-density lipoproteins were found. The dependence of the parameter on incubation time and the extend of oxidation of low-density lipoproteins were obtained. No significant differences in rotational correlation time of 16-doxylstearate between platelets incubated with and without oxidized low-density lipoproteins was observed within the limits of experimental error; however, the changes in the half-width of the low-field component may be considered reliable. The interaction of oxidized low-density lipoproteins with platelets leads to an increase in plasma membrane fluidity, thereby mediating the activating action on platelets.  相似文献   

9.
Progesterone is believed to act at the cell surface to induce the resumption of the meiotic divisions in amphibian oocytes. Analysis of [3H]- and [14C]progesterone uptake and exchange by the plasma-vitelline membrane complex, nucleus and cytoplasm of the isolated Rana oocyte indicates that progesterone uptake by the plasma membrane is saturable, specific and temperature-dependent, and has a slow off-rate. Estradiol (a noninducer) did not compete with progesterone, whereas testosterone (an inducer) blocked progesterone uptake by the membrane complex. Scatchard-type plots indicate an apparent Kd of 5.1·10−7 M over the [progesterone]o range of 0.01–1.0 μM with maximum binding at about 70 fmol per oocyte. Membrane uptake at higher [progesterone]o (2–40 μM) indicates apparent cooperative binding, with saturation up to 10 pmol per oocyte. Cytoplasmic uptake was apparently nonspecific and less temperature-dependent than membrane uptake and steroid concentrations (progesterone and pregnanediones) exceeded water solubility by 30–60 min. Nuclear uptake was saturable and specific but uptake was independent of temperature. A comparison of membrane binding and a physiological response (nuclear breakdown) indicated only about 10% of the membrane sites need be filled to initiate a 50% response.  相似文献   

10.
The meiotic maturation of Xenopus laevis oocytes is induced in vitro by progesterone which interacts at the cell surface level. A cell-free membrane preparation (P-10,000) incorporated 32P from [gamma-32P]ATP, mostly into two proteins, Mr approximately 56,000 and approximately 48,000 (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Progesterone, added in vitro, specifically inhibited the phosphorylation of the Mr approximately 48,000 protein (named p48). Half-maximal inhibition of p48 phosphorylation occurred with progesterone approximately 8 microM, in good correlation with hormone concentration inducing oocyte maturation. The effect was not due to stimulation of protein phosphatase activity. The potent maturation inducers testosterone and deoxycorticosterone also inhibited p48 phosphorylation, whereas biologically inactive steroids or cholesterol did not. p48 phosphorylation was not affected by cAMP, cGMP, polyamines, calmodulin, and phospholipids + diolein. EGTA had a stimulatory effect which was reversed by added Ca2+. The inhibitory effects of progesterone and Ca2+ were additive, suggesting two distinct sites of action. Phospho-p48 was not detected in yolk platelets, microsomes, and cytosol of oocytes. Contrary to p48 itself, the p48 kinase activity was loosely associated with P-10,000. Progesterone inhibited p48 phosphorylation produced by either cytosol or exogenous pure catalytic subunit of cAMP-dependent protein kinase. Conversely, phosphorylation of casein and histones by protein kinase activity present in P-10,000 was not modified by progesterone. It is then suggested that progesterone regulates p48 phosphorylation by affecting the protein substrate in the membrane, rather than by inhibiting the protein kinase enzyme itself. The data demonstrate a direct effect (not mediated by change of protein synthesis) of steroids on p48 phosphorylation in the plasma membrane, and they suggest that this protein could be implicated in the initial action of progesterone on oocyte maturation.  相似文献   

11.
Kostellow AB  Ma GY  Morrill GA 《Steroids》2001,66(11):849-856
Progesterone has been shown to act at plasma membrane receptors on the amphibian oocyte to trigger a cascade of changes in membrane phospholipids and to initiate the G(2)/M transition of the first meiotic division. The earliest event (0-1 min) is the transient N-methylation of phosphatidylethanolamine (PE) to form phosphatidylmonomethylethanolamine (PME), demonstrated using [(3)H]glycerol to prelabel oocyte plasma membrane PE. [(3)H]Glycerol-labeled PME rises 10-fold within the 1-2 min after exposure to progesterone and accounts for conversion of about 50% of the [3H]Glycerol-labeled PE. [(3)H]PME levels slowly decline over the following 10-30 min. [(3)H] or [(14)C] labeled fatty acid experiments showed that newly formed PME is enriched in linoleic or palmitic, but not in arachidonic acid, indicating that specific PE pools undergo progesterone-induced N-methylation. Two plasma membrane changes: activation of serine protease, and Ca(2+) release from the oocyte surface coincide with PME formation; both are prevented by pretreatment of oocytes with the N-methylation inhibitor, 2-methylaminoethane. Media containing PME micelles release both protease and Ca(2+) from intact oocytes within the first 1-2 min. The immediate downstream metabolites of PME, PDE and PC, do not induce serine protease activity or Ca(2+) release. We conclude that progesterone initially activates N-methyltransferase in the oocyte plasma membrane, and that the first product, PME, is responsible for activation of serine protease in the plasma membrane and the release of Ca(2+) from the oocyte surface.  相似文献   

12.
Washed human platelets were labeled with stearate or methyl stearate spin probe. The order parameter of stearate spin probe was decreased markedly when the platelets were aggregated by thrombin, ADP or epinephrine. Central peak width of methyl stearate spin probe was also reduced in the aggregation induced by thrombin and ADP. However, isolated plasma membrane did not show any decrease of the order parameter by the addition of thrombin. Aspirin inhibited both the platelet aggregation and the decrease of the order parameter. The results suggest that ESR spectral changes might be caused by reorganization of membrane constituents rather than their quantitative or qualitative alteration.  相似文献   

13.
The membrane fluidity of seedling mitochondria of chilling-sensitive rice and that of chilling-tolerant rice were compared by using spin labeled stearic acid: 5, 12 16-NS and fluorescent probe DPH. From the ESR spectra using 5-NS as a spin labeled probe it clearly showed that the calculated order parameter (S) of seedling mitochondria of chilling-sensitive rice Qiu Guang was obviously higher than that of chilling-resistant rice Ji Geng 44. Similar results were obtained when seedling'mitochondria of another species of chilling sensitive Zao Jin were compared with those of chilling tolerant rice Ji Geng 60. Moreover, the difference of order parameters between Ji Geng 44 and Ji Geng 60 was quite small, but both of them are obviously lower than those of chilling-sensitive rice Qiu Guang or Zao Jin. The results using spin labeled probe 12-NS, 16-NS clearly showed that the relative correlation times (τc) of seedling mitochondria of chilling-sensitive rice Qiu Guang or Zao Jin was markedly higher than that of the chilling tolerant rice Ji Geng 44 or Ji Geng 60. A comparison of membrane fluidity of seedling mitochondria of chilling-sensitive and chilling-resistant rice using fluorescent probe DPH was also carried out. Similar results were obtained and showed that the fluidity of mitochondrial membrane of chilling resistant rice seedling was obviously higher than that of the chilling-sensitive ones. Thus, it seemed that the fluidity of mitochondrial membrane might be used as a biophysical test for screening chilling tolerance of rice at seedling stage.  相似文献   

14.
Xenopus laevis oocyte maturation is induced by the steroid hormone progesterone through a non-genomic mechanism initiated at the cell membrane. Recently, two Xenopus oocyte progesterone receptors have been cloned; one is the classical progesterone receptor (xPR-1) involved in genomic actions and the other a putative seven-transmembrane-G-protein-couple receptor. Both receptors are postulated to be mediating the steroid-induced maturation process in the frog oocyte. In this study, we tested the hypothesis that the classical progesterone receptor, associated to the oocyte plasma membrane, is participating in the reinitiation of the cell cycle. Addition of a myristoilation and palmytoilation signal at the amino terminus of xPR-1 (mp xPR-1), increased the amount of receptor associated to the oocyte plasma membrane and most importantly, significantly potentiated progesterone-induced oocyte maturation sensitivity. These findings suggest that the classical xPR-1, located at the plasma membrane, is mediating through a non-genomic mechanism, the reinitiation of the meiotic cell cycle in the X. laevis oocyte.  相似文献   

15.
Progesterone triggers the resumption of meiosis in the amphibian oocyte through a signaling system at the plasma membrane. Analysis of [(3)H]ouabain and [(3)H]progesterone binding to the plasma membrane of the Rana pipiens oocyte indicates that progesterone competes with ouabain for a low affinity ouabain binding site on a 112kDa alpha1-subunit of the membrane Na/K-ATPase. Published amino acid sequences from both low and high affinity ouabain binding alpha1-subunits are compared, together with published site-directed mutagenesis studies of ouabain binding. We propose that the progesterone binding site is located in the external loop (23 amino acids) between the M1-M2 transmembrane helices. Analysis of loop topology and the countercurrent hydrophobicity/polarity gradients within the M1-M2 loop further suggest that the polar beta and hydrophobic alpha surfaces of the planar progesterone molecule interact with opposite sides of the amino acid loop. The 19-angular methyl group of progesterone is essential for activity; it could bind to the C-terminal region of the M1-M2 loop. Maximum biological activity requires formation of hydrogen-bond networks between the 3-keto group of progesterone and Arg(118), Asp(129) and possibly Glu(122-124) in the C-terminal region of the loop. The 20-keto group hydrogen may in turn hydrogen bond to Cys(111) near the M1 helix. Peptide flexibility undergoes a maximal transition near the midway point in the M1-M2 loop, suggesting that folding occurs within the loop, which further stabilizes progesterone binding.  相似文献   

16.
The influence of dolichols on fluidity of mouse synaptic plasma membranes   总被引:1,自引:0,他引:1  
Dolichols are isoprenologues which constitute an important component of biological membranes. However, an understanding of the effects of dolichols on the organization and dynamics of biological membranes has not been forthcoming. The experiments reported here are aimed at understanding the effects of dolichols on the physical properties of mouse brain synaptic plasma membranes. The effect of dolichols incorporated into mouse brain synaptic plasma membranes on fluorescent and electron spin resonance probes sensing the hydrophobic core differed from that of probes reporting closer to the surface of membrane bilayers. Dolichols significantly (P less than 0.01) lowered the polarization, limiting anisotropy, and order parameter of diphenylhexatriene in synaptic plasma membranes and liposomes extracted from synaptic plasma membranes, without changing the rotational relaxation time. Similarly, dolichol increased the fluidity reported by 16-doxylstearic acid in synaptic plasma membranes or liposomes extracted from synaptic plasma membranes. In contrast, dolichols exerted no effect on those properties for trans-parinaric acid or 5-doxylstearic acid in synaptic plasma membranes or liposomes derived therefrom. Dolichols can dramatically alter the structure and dynamics of lipid motion in synaptic plasma membranes and these effects are dependent on the location of the probe in the membrane.  相似文献   

17.
Progesterone appears to be the physiological inducer of meiosis in amphibian oocytes. In Rana pipiens, dl-propranolol mimics the action of progesterone and both agents have a common action in producing a rapid [45Ca] efflux and a fall in intracellular cAMP followed by nuclear breakdown. Comparison of the rate of hydrolysis of injected [3H]-cAMP and of the conversion of injected [3H]-ATP to [3H]-cAMP followed exposure to meiotic inducers and inhibitors indicates that adenylate cyclase and not phosphodiesterase is the rate-limiting step in regulating [cAMP]i in the oocyte. The results suggest that progesterone initiates the resumption of the meiotic divisions by down-regulation of membrane adenylate cyclase, possibly via Ca2+ release from specific membrane sites.  相似文献   

18.
H Hauser  N Gains  G Semenza  M Spiess 《Biochemistry》1982,21(22):5621-5628
The temperature dependence of the packing (order) and fluidity (microviscosity) of rabbit small, intestinal brush border vesicle membranes and of liposomes made from their extracted lipids has been investigated by using a variety of lipid spin probes. The lipids in the brush border membrane are present essentially as a bilayer. Compared to other mammalian membranes, the brush border membrane appears to be characterized by a relatively high packing order as well as microviscosity. At body temperature, the lipid molecules undergo rapid, anisotropic motion, which is essentially a fast rotation about an axis approximately perpendicular to the bilayer normal. Both the order (motional anisotropy) and the microviscosity increase with decreasing temperature and with increasing distance from the center of the bilayer. Qualitatively similar motional or fluidity gradients have been reported for other mammalian and bacterial membranes. The liposomes made from the extracted lipids have a somewhat lower packing order and a slightly higher fluidity than brush border vesicle membranes. The differences are, however, small indicating that the packing and the fluidity (microviscosity) of the membrane are primarily determined by the lipid composition. Membrane-associated proteins and cytoskeleton cannot play a dominant role in determining the order and fluidity of the lipid bilayer. Discontinuities are observed in the temperature dependence of various spectral parameters, the order parameter S, the rotational correlation time tau, and 2,2,6,6-tetramethylpiperidinyloxy partitioning. They are assigned to phase transitions and/or phase separations of the membrane lipids. These discontinuities occur at about 30, 20, and 13 degrees C for 5-doxyl-, 12-doxyl-, and 16-doxylstearic acid, respectively. The apparent transition temperature depends on the location of the spin probe along the bilayer normal, being higher the closer the probe is to the membrane surface. This indicates the possibility that chain melting is progressive and spreads with increasing temperature from the center of the membrane outward.  相似文献   

19.
A decrease of erythrocyte membrane fluidity can contribute to the pathophysiology of hypertension. Soy products, which are used as alternative therapeutics in some cardiovascular conditions, contain various isoflavones (genistein, daidzein, and their glucosides, genistin and daidzin), which can incorporate cellular membrane and change its fluidity. The aim of this study was to examine the effects of soy extract (which generally corresponds to the soy products of isoflavone composition) on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance spectroscopy and fatty acid spin probes (5-DS and 12-DS), the spectra of which are dependent on membrane fluidity. After being treated with soy extract, erythrocytes showed a significant (P = 0.016) decrease of membrane fluidity near the hydrophilic surface, while there were no significant changes of fluidity in deeper hydrophobic membrane regions. These results suggest that soy products containing high levels of genistein and isoflavone glucosides may not be suitable for use in hypertension because they decrease erythrocyte membrane fluidity.  相似文献   

20.
G A Morrill  A B Kostellow 《Steroids》1999,64(1-2):157-167
Meiosis in the amphibian oocyte is normally initiated by gonadotropins, which stimulate follicle cells to secret progesterone. The progesterone-induced G2/M transition in the amphibian oocyte was the first well-defined example of a steroid effect at the plasma membrane, since it could be shown that exogenous, but not injected, progesterone induced meiosis and that many of the progesterone-induced changes associated with meiosis occurred in enucleated oocytes. We find that [3H]progesterone binding to isolated plasma membranes of Rana pipiens oocytes is saturable, specific and temperature-dependent. Photoaffinity labeling with the synthetic progestin [3H]R5020 followed by gel electrophoresis demonstrated progestin binding to both 80 and 110 kDa proteins in the oocyte cytosol, whereas only the 110 kDa R5020 binding protein was present in the oocyte plasma membrane. We have shown that progesterone acts at Rana oocyte plasma membrane receptors within seconds to release a cascade of lipid messengers. Membrane-receptor binding causes the successive activation of: 1) N-methyltransferases, which convert phosphatidylethanolamine to phosphatidylcholine (PC); 2) an exchange reaction between PC and ceramide to form sphingomyelin (SM) and 1,2-diacylglycerol (DAG); 3) phospholipase D/phosphatidate phosphohydrolase, releasing a second DAG transient; and 4) phosphatidylinositol-specific phospholipase C, generating inositol trisphosphate and a third DAG transient. Within minutes, diglyceride kinase converts newly formed DAG species to phosphatidic acid, turning off the successive DAG signals. A transient fall (0-30 s) in intracellular ceramide is followed (within 1-2 min) by a sustained rise in intracellular ceramide lasting 3-4 h. This ceramide may be significant in later cyclin-dependent steps. We conclude that the initial action of progesterone at its plasma membrane receptor triggers a series of enzyme activations that modify the membrane and release multiple DAG species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号