首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic subtilisin-like endoprotease furin is found predominantly in the trans-Golgi network (TGN) and cycles between this compartment, the cell surface, and the endosomes. There is experimental evidence for endocytosis from the plasma membrane and transport from endosomes to the TGN, but direct exit from the TGN to endosomes via clathrin-coated vesicles has only been discussed but not directly shown so far. Here we present data showing that expression of furin promotes the first step of clathrin-coat assembly at the TGN, the recruitment of the Golgi-specific assembly protein AP-1 on Golgi membranes. Further, we report that furin indeed is present in isolated clathrin-coated vesicles. Packaging into clathrin-coated vesicles requires signal components in the furin cytoplasmic domain which can be recognized by AP-1 assembly proteins. We found that besides depending on the phosphorylation state of a casein kinase II site, interaction of the furin tail with AP-1 and its mu1subunit is mediated by a tyrosine motif and to less extent by a leucine-isoleucine signal, whereas a monophenylalanine motif is only involved in binding to the intact AP-1 complex. This study implies that high affinity interaction of AP-1 or mu1 with the cytoplasmic tail of furin needs a complex interplay of signal components rather than one distinct signal.  相似文献   

2.
Furin, a subtilisin-like eukaryotic endoprotease, is responsible for proteolytic cleavage of cellular and viral proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-terminus of basic amino acid sequences, such as R-X-K/R-R and R-X-X-R. Furin was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated vesicles dispatched from the TGN, on the plasma membrane as an integral membrane protein and in the medium as an anchorless enzyme. When furin was vectorially expressed in normal rat kidney (NRK) cells it accumulated in the TGN similarly to the endogenous glycoprotein TGN38, often used as a TGN marker protein. The signals determining TGN targeting of furin were investigated by mutational analysis of the cytoplasmic tail of furin and by using the hemagglutinin (HA) of fowl plague virus, a protein with cell surface destination, as a reporter molecule, in which membrane anchor and cytoplasmic tail were replaced by the respective domains of furin. The membrane-spanning domain of furin grafted to HA does not localize the chimeric molecule to the TGN, whereas the cytoplasmic domain does. Results obtained on furin mutants with substitutions and deletions of amino acids in the cytoplasmic tail indicate that wild-type furin is concentrated in the TGN by a mechanism involving two independent targeting signals, which consist of the acidic peptide CPSDSEEDEG783 and the tetrapeptide YKGL765. The acidic signal in the cytoplasmic domain of a HA-furin chimera is necessary and sufficient to localize the reporter molecule to the TGN, whereas YKGL is a determinant for targeting to the endosomes. The data support the concept that the acidic signal, which is the dominant one, retains furin in the TGN, whereas the YKGL motif acts as a retrieval signal for furin that has escaped to the cell surface.  相似文献   

3.
The predominant intracellular localization of the eukaryotic subtilisin-like endoprotease furin is the trans-Golgi network (TGN), but a small fraction is also found on the cell surface. Furin on the cell surface is internalized and delivered to the TGN. The identification of three endocytosis motifs, a tyrosine (YKGL(765)) motif, a leucine-isoleucine (LI(760)) motif, and a phenylalanine (Phe(790)) signal, in the furin cytoplasmic domain suggested that endocytosis of furin occurs via an AP-2/clathrin-dependent pathway. Since little is known about proteins containing multiple sorting components in their cytoplasmic domain, the combination of diverse internalization signals in the furin tail raised the question of their individual role. Here we present data showing that the furin tail interacts with the medium (micro2) subunit of the AP-2 plasma membrane-specific adaptor complex in vitro and that this interaction primarily depends on recognition of the tyrosine-based sorting signal and to less extent on the leucine-isoleucine motif. We further provide evidence that the three endocytosis signals are of different functional importance for furin internalization and retrieval to the TGN in vivo, with the tyrosine-based motif being the major determinant, followed by the phenylalanine signal, whereas the leucine-isoleucine motif is only a minor component. Finally, we report that phosphorylation of the furin tail by casein kinase II is not only important for efficient interaction with micro2 and internalization from the plasma membrane but also determines fast retrieval of the protein from the plasma membrane to the TGN.  相似文献   

4.
In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA-mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.  相似文献   

5.
The occurrence of clathrin-coated buds on immature granules (IGs) of the regulated secretory pathway suggests that specific transmembrane proteins are sorted into these buds through interaction with cytosolic adaptor proteins. By quantitative immunoelectron microscopy of rat endocrine pancreatic β cells and exocrine parotid and pancreatic cells, we show for the first time that the mannose 6–phosphate receptors (MPRs) for lysosomal enzyme sorting colocalize with the AP-1 adaptor in clathrin-coated buds on IGs. Furthermore, the concentrations of both MPR and AP-1 decline by ~90% as the granules mature. Concomitantly, in exocrine secretory cells lysosomal proenzymes enter and then are sorted out of IGs, just as was previously observed in β cells (Kuliawat, R., J. Klumperman, T. Ludwig, and P. Arvan. 1997. J. Cell Biol. 137:595–608). The exit of MPRs in AP-1/clathrin-coated buds is selective, indicated by the fact that the membrane protein phogrin is not removed from maturing granules. We have also made the first observation of a soluble N-ethylmaleimide–sensitive factor attachment protein receptor, syntaxin 6, which has been implicated in clathrin-coated vesicle trafficking from the TGN to endosomes (Bock, J.B., J. Klumperman, S. Davanger, and R.H. Scheller. 1997. Mol. Biol. Cell. 8:1261–1271) that enters and then exits the regulated secretory pathway during granule maturation. Thus, we hypothesize that during secretory granule maturation, MPR–ligand complexes and syntaxin 6 are removed from IGs by AP-1/clathrin-coated vesicles, and then delivered to endosomes.  相似文献   

6.
The mammalian proprotein convertases (PCs) are a family of secretory pathway enzymes that catalyze the endoproteolytic maturation of peptide hormones and many bioactive proteins. Two PCs, furin and PC6B, are broadly expressed and share very similar cleavage site specificities, suggesting that they may be functionally redundant. However, germline knockout studies show that they are not. Here we report the distinct subcellular localization of PC6B and identify the sorting information within its cytoplasmic domain (cd). We show that in neuroendocrine cells, PC6B is localized to a paranuclear, brefeldin A-dispersible, BaCl(2)-responsive post-Golgi network (TGN) compartment distinct from furin and TGN38. The 88-amino acid PC6B-cd contains sorting information sufficient to direct reporter proteins to the same compartment as full-length PC6B. Mutational analysis indicates that endocytosis is predominantly directed by a canonical tyrosine-based motif (Tyr(1802)GluLysLeu). Truncation and sufficiency studies reveal that two clusters of acidic amino acids (ACs) within the PC6B-cd contain differential sorting information. The membrane-proximal AC (AC1) directs TGN localization and interacts with the TGN sorting protein PACS-1. The membrane-distal AC (AC2) promotes a localization characteristic of the full-length PC6B-cd. Our results demonstrate that AC motifs can target proteins to distinct TGN/endosomal compartments and indicate that the AC-mediated localization of PC6B and furin contribute to their distinct roles in vivo.  相似文献   

7.
The regulated sorting of proteins within the trans-Golgi network (TGN)/endosomal system is a key determinant of their biological activity in vivo. For example, the endoprotease furin activates of a wide range of proproteins in multiple compartments within the TGN/endosomal system. Phosphorylation of its cytosolic domain by casein kinase II (CKII) promotes the localization of furin to the TGN and early endosomes whereas dephosphorylation is required for efficient transport between these compartments (Jones, B.G., L. Thomas, S.S. Molloy, C.D. Thulin, M.D. Fry, K.A. Walsh, and G. Thomas. 1995. EMBO [Eur. Mol. Biol. Organ.] J. 14:5869–5883). Here we show that phosphorylated furin molecules internalized from the cell surface are retained in a local cycling loop between early endosomes and the plasma membrane. This cycling loop requires the phosphorylation state-dependent furin-sorting protein PACS-1, and mirrors the trafficking pathway described recently for the TGN localization of furin (Wan, L., S.S. Molloy, L. Thomas, G. Liu, Y. Xiang, S.L. Ryback, and G. Thomas. 1998. Cell. 94:205–216). We also demonstrate a novel role for protein phosphatase 2A (PP2A) in regulating protein localization in the TGN/endosomal system. Using baculovirus recombinants expressing individual PP2A subunits, we show that the dephosphorylation of furin in vitro requires heterotrimeric phosphatase containing B family regulatory subunits. The importance of this PP2A isoform in directing the routing of furin from early endosomes to the TGN was established using SV-40 small t antigen as a diagnostic tool in vivo. The role of both CKII and PP2A in controlling multiple sorting steps in the TGN/endosomal system indicates that the distribution of itinerant membrane proteins may be acutely regulated via signal transduction pathways.  相似文献   

8.
Furin catalyzes the proteolytic maturation of many proproteins within the trans-Golgi network (TGN)/endosomal system. Furin's cytosolic domain (cd) directs both the compartmentalization to and transit between its manifold processing compartments (i.e., TGN/biosynthetic pathway, cell surface, and endosomes). Here we report the identification of the first furin cd sorting protein, ABP-280 (nonmuscle filamin), an actin gelation protein. The furin cd was used as bait in a yeast two-hybrid screen to identify ABP-280 as a furin-binding protein. Binding analyses in vitro and coimmunoprecipitation studies in vivo showed that furin and ABP-280 interact directly and that ABP-280 tethers furin molecules to the cell surface. Quantitative analysis of both ABP-280-deficient and genetically replete cells showed that ABP-280 modulates the rate of internalization of furin but not of the transferrin receptor, a cycling receptor. However, although ABP-280 directs the rate of furin internalization, the efficiency of sorting of the endoprotease from the cell surface to early endosomes is independent of expression of ABP-280. By contrast, efficient sorting of furin from early endosomes to the TGN requires expression of ABP-280. In addition, ABP-280 is also required for the correct localization of late endosomes (dextran bead uptake) and lysosomes (LAMP-1 staining), demonstrating a pleiotropic role for this actin binding protein in the organization of cellular compartments and directing protein traffic. Finally, and consistent with the trafficking studies on furin, we showed that ABP-280 modulates the processing of furin substrates in the endocytic but not the biosynthetic pathways. The novel roles of ABP-280 and the cytoskeleton in the sorting of furin in the TGN/ endosomal system and the formation of proprotein processing compartments are discussed.  相似文献   

9.
Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.  相似文献   

10.
The regulated release of proteins depends on their inclusion within large dense-core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network (TGN), but the mechanism for protein sorting to this regulated secretory pathway (RSP) and the cytosolic machinery involved in this process have remained poorly understood. Using an RNA interference screen in Drosophila melanogaster S2 cells, we now identify a small number of genes, including several subunits of the heterotetrameric adaptor protein AP-3, which are required for sorting to the RSP. In mammalian neuroendocrine cells, loss of AP-3 dysregulates exocytosis due to a primary defect in LDCV formation. Previous work implicated AP-3 in the endocytic pathway, but we find that AP-3 promotes sorting to the RSP within the biosynthetic pathway at the level of the TGN. Although vesicles with a dense core still form in the absence of AP-3, they contain substantially less synaptotagmin 1, indicating that AP-3 concentrates the proteins required for regulated exocytosis.  相似文献   

11.
P-selectin, a cell adhesion protein participating in the early stages of inflammation, contains multiple sorting signals that regulate its cell surface expression. Targeting to secretory granules regulates delivery of P-selectin to the cell surface. Internalization followed by sorting from early to late endosomes mediates rapid removal of P-selectin from the surface. We show here that the P-selectin cytoplasmic domain bound AP-2 and AP-3 adaptor complexes in vitro . The amino acid substitution L768A, which abolishes endosomal sorting and impairs granule targeting of P-selectin, reduced binding of AP-3 adaptors but not AP-2 adaptors. Turnover of P-selectin was 2.4-fold faster than turnover of transferrin receptor in AP-3-deficient mocha fibroblasts, similar to turnover of these two proteins in AP-3-competent cells, demonstrating that AP-3 function is not required for endosomal sorting. However, sorting P-selectin to secretory granules was defective in endothelial cells from AP-3-deficient pearl mice, demonstrating a role for AP-3 adaptors in granule assembly in endothelial cells. P-selectin sorting to platelet α-granules was normal in pearl mice, consistent with earlier evidence that granule targeting of P-selectin is mechanistically distinct in endothelial cells and platelets. These observations establish that AP-3 adaptor functions in assembly of conventional secretory granules, in addition to lysosomes and the 'lysosome-like' secretory granules of platelets and melanocytes.  相似文献   

12.
Carboxypeptidase D (CPD) is a recently discovered metallocarboxypeptidase that is predominantly located in the trans-Golgi network (TGN), and also cycles between the cell surface and the TGN. In the present study, the intracellular distribution of CPD was examined in AtT-20 cells, a mouse anterior pituitary-derived corticotroph. CPD-containing compartments were isolated using antibodies to the CPD cytosolic tail. The immunopurified vesicles contained TGN proteins (TGN38, furin, syntaxin 6) but not lysosomal or plasma membrane proteins. The CPD-containing vesicles also contained neuropeptide-processing enzymes and adrenocorticotropic hormone, a product of proopiomelanocortin proteolysis. Electron microscopic analysis revealed that CPD is present within the TGN and immature secretory granules but is virtually absent from mature granules, suggesting that CPD is actively removed from the regulated pathway during the process of granule maturation. A second major finding of the present study is that a soluble truncated form of CPD is secreted mainly via the constitutive pathway in AtT-20 cells, indicating that the lumenal domain does not contain signals for the sorting of CPD to mature secretory granules. Taken together, these data are consistent with the proposal that CPD participates in the processing of proteins within the TGN and immature secretory vesicles.  相似文献   

13.
Neuroendocrine secretory granules (SGs) are formed at the trans-Golgi network (TGN) as immature intermediates. In PC12 cells, these immature SGs (ISGs) are transported within seconds to the cell cortex, where they move along actin filaments and complete maturation. This maturation process comprises acidification-dependent processing of cargo proteins, condensation of the SG matrix, and removal of membrane and proteins not destined to mature SGs (MSGs) into ISG-derived vesicles (IDVs). We investigated the roles of myosin Va and Rab3 isoforms in the maturation of ISGs in neuroendocrine PC12 cells. The expression of dominant-negative mutants of myosin Va or Rab3D blocked the removal of the endoprotease furin from ISGs. Furthermore, expression of mutant Rab3D, but not of mutant myosin Va, impaired cargo processing of SGs. In conclusion, our data suggest an implication of myosin Va and Rab3D in the maturation of SGs where they participate in overlapping but not identical tasks.  相似文献   

14.
Phogrin is an integral glycoprotein primarily expressed in neuroendocrine cells. The predominant localization of phogrin is on dense-core secretory granules, and the lumenal domain has been shown to be involved in its efficient sorting to the regulated secretory pathway. Here, we present data showing that a leucine-based sorting signal [EExxxIL] within the cytoplasmic tail contributes its steady-state localization to secretory granules. Deletion mutants in the tail region failed to represent granular distribution in pancreatic beta-cell line, MIN6, and anterior pituitary cell line, AtT-20. A sorting signal mutant with two glutamic acids substituted into alanines (EE/AA) is primarily accumulated in the Golgi area instead of secretory granules, and another mutant (IL/AA) is trapped at the plasma membrane due to a defect in endocytosis. We further demonstrate that the leucine-based sorting signal of phogrin specifically interacts with both adaptor protein (AP)-1 and AP-2 clathrin adaptor complexes in vitro. These observations, along with previous studies, suggest that distinct domains of phogrin mediate proper localization of this transmembrane protein on secretory granules.  相似文献   

15.
Sorting of regulated secretory proteins in the TGN to immature secretory granules (ISG) is thought to involve at least two steps: their selective aggregation and their interaction with membrane components destined to ISG. Here, we have investigated the sorting of chromogranin B (CgB), a member of the granin family present in the secretory granules of many endocrine cells and neurons. Specifically, we have studied the role of a candidate structural motif implicated in the sorting of CgB, the highly conserved NH2-terminal disulfide– bonded loop. Sorting to ISG of full-length human CgB and a deletion mutant of human CgB (Δcys-hCgB) lacking the 22–amino acid residues comprising the disulfide-bonded loop was compared in the rat neuroendocrine cell line PC12. Upon transfection, i.e., with ongoing synthesis of endogenous granins, the sorting of the deletion mutant was only slightly impaired compared to full-length CgB. To investigate whether this sorting was due to coaggregation of the deletion mutant with endogenous granins, we expressed human CgB using recombinant vaccinia viruses, under conditions in which the synthesis of endogenous granins in the infected PC12 cells was shut off. In these conditions, Δcys-hCgB, in contrast to full-length hCgB, was no longer sorted to ISG, but exited from the TGN in constitutive secretory vesicles. Coexpression of full-length hCgB together with Δcys-hCgB by double infection, using the respective recombinant vaccinia viruses, rescued the sorting of the deletion mutant to ISG. In conclusion, our data show that (a) the disulfide-bonded loop is essential for sorting of CgB to ISG and (b) the lack of this structural motif can be compensated by coexpression of loop-bearing CgB. Furthermore, comparison of the two expression systems, transfection and vaccinia virus–mediated expression, reveals that analyses under conditions in which host cell secretory protein synthesis is blocked greatly facilitate the identification of sequence motifs required for sorting of regulated secretory proteins to secretory granules.  相似文献   

16.
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes.  相似文献   

17.
Scott GK  Gu F  Crump CM  Thomas L  Wan L  Xiang Y  Thomas G 《The EMBO journal》2003,22(23):6234-6244
PACS-1 is a cytosolic sorting protein that directs the localization of membrane proteins in the trans-Golgi network (TGN)/endosomal system. PACS-1 connects the clathrin adaptor AP-1 to acidic cluster sorting motifs contained in the cytoplasmic domain of cargo proteins such as furin, the cation-independent mannose-6-phosphate receptor and in viral proteins such as human immunodeficiency virus type 1 Nef. Here we show that an acidic cluster on PACS-1, which is highly similar to acidic cluster sorting motifs on cargo molecules, acts as an autoregulatory domain that controls PACS-1-directed sorting. Biochemical studies show that Ser278 adjacent to the acidic cluster is phosphorylated by CK2 and dephosphorylated by PP2A. Phosphorylation of Ser278 by CK2 or a Ser278-->Asp mutation increased the interaction between PACS-1 and cargo, whereas a Ser278-->Ala substitution decreased this interaction. Moreover, the Ser278-->Ala mutation yields a dominant-negative PACS-1 molecule that selectively blocks retrieval of PACS-1-regulated cargo molecules to the TGN. These results suggest that coordinated signaling events regulate transport within the TGN/endosomal system through the phosphorylation state of both cargo and the sorting machinery.  相似文献   

18.
Immature secretory granules (ISGs) in endocrine and neuroendocrine cells have been shown by morphological techniques to be partially clathrin coated (Orci, L., M. Ravazzola, M. Amherdt, D. Lonvard, A. Perrelet. 1985a. Proc. Natl. Acad. Sci. USA. 82:5385-5389; Tooze, J., and S. A. Tooze. 1986. J. Cell Biol. 103:839-850). The function, and composition, of this clathrin coat has remained an enigma. Here we demonstrate using three independent techniques that immature secretory granules isolated from the rat neuroendocrine cell line PC12 have clathrin coat components associated with their membrane. To study the nature of the coat association we have developed an assay whereby the binding of the AP-1 subunit gamma-adaptin to ISGs was reconstituted by addition of rat or bovine brain cytosol. The amount of gamma-adaptin bound to the ISGs was ATP independent and was increased fourfold by the addition of GTPgammaS. The level of exogenous gamma-adaptin recruited to the ISG was similar to the level of gamma-adaptin present on the ISG after isolation. Addition of myristoylated ARF1 peptide stimulated binding. Reconstitution of the assay using AP-1 adaptor complex and recombinant ARF1 provided further evidence that ARF is involved in gamma-adaptin binding to ISGs; BFA inhibited this binding. Trypsin treatment and Trisstripping of the ISGs suggest that additional soluble and membrane-associated components are required for gamma-adaptin binding.  相似文献   

19.
Regulated secretion of hormones occurs when a cell receives an external stimulus, triggering the secretory granules to undergo fusion with the plasma membrane and release their content into the extracellular milieu. The formation of a mature secretory granule (MSG) involves a series of discrete and unique events such as protein sorting, formation of immature secretory granules (ISGs), prohormone processing and vesicle fusion. Regulated secretory proteins (RSPs), the proteins stored and secreted from MSGs, contain signals or domains to direct them into the regulated secretory pathway. Recent data on the role of specific domains in RSPs involved in sorting and aggregation suggest that the cell-type-specific composition of RSPs in the trans-Golgi network (TGN) has an important role in determining how the RSPs get into ISGs. The realization that lipid rafts are implicated in sorting RSPs in the TGN and the identification of SNARE molecules represent further major advances in our understanding of how MSGs are formed. At the heart of these findings is the elucidation of molecular mechanisms driving protein--lipid and protein--protein interactions specific for secretory granule biogenesis.  相似文献   

20.
Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号