首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The exocellular DD -carboxypeptidase–transpeptidase that Streptomyces R61 excretes during growth has been produced in large fermentation units of 15 m3 total capacity. The yield from 15,000 liter culture filtrate was 1.080 g purified enzyme (92% purity) with a total recovery of 29% and at least a 2000-fold increased specific activity.  相似文献   

4.
The simplest model for the interaction between the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61 and beta-lactam antibiotics involves the three following steps: (a) the formation of a reversible equimolar enzyme - antibiotic complex; (b) the irreversible transformation of this complex into a modified enzyme - antibiotic complex; and (c) the breakdown of this latter complex and the concomitant release of a regenerated enzyme and a modified antibiotic molecule. The dissociation constant for step 1 and the rate constants for steps 2 and 3 were measured with various beta-lactam antibiotics. With antibiotic such as benzylpenicillin, which behaves as a good 'substrate', steps 1 and 2 occur at enzymic velocities, whereas step 3 occurs at a very low velocity and hence is responsible for the low efficiency of the overall process.  相似文献   

5.
A pencillin-sensitive enzyme, the exocellular dd-carboxypeptidase-transpeptidase from Streptomyces R61, has been crystallized from polyethylene glycol (Mr = 6000 to 7500) solution at pH 7·6. X-ray examination of the orthorhombic crystals shows the space group is P212121, with unit cell dimensions a = 51·1 A?, b = 67·4 A?, and c = 102·9 A?. With four molecules of molecular weight 38,000, the A?3/dalton ratio for the cell is 2·33. The crystals are stable to irradiation for 75 hours and are suitable for structure analysis to at least 2·4 Å resolution. The radius of gyration of the molecule in solution at pH 6.8 is 20.8 Å.  相似文献   

6.
7.
The exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R39 is inhibited by beta-lactam antibiotics according to the same general scheme of reaction as the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. However, the values for the kinetic constants involved in the reaction are very different for the two enzymes and provide an explanation for the observation that the R39 enzyme is more sensitive to beta-lactam antibiotics than the R61 enzyme. Further, particular beta-lactams influence the kinetic constants to different extents depending on the source of the enzyme, so that a physical basis for the spectrum of antibiotic activity against particular enzyme systems is provided.  相似文献   

8.
9.
10.
The exocellular beta-lactamase of Streptomyces albus G has been purified to near protein homogeneity. It consists of one single polypeptide chain of mol.wt. 30 000-31 000, has a rather low isoelectric point (at pH 6.0) and contains less lysine (2.1%) and more half-cystine residues than most beta-lactamases from other Gram-positive bacteria. Penicillins are much better substrates than delta 3-cephalosporins; the catalytic-centre activity of good penicillin substrates is 333-500 s-1. The exocellular, mol.wt. 17 000 DD-carboxypeptidase of S. albus G [previously purified to protein homogeneity; Duez, Frère, Geurts, Ghuysen, Dierickx & Delcambe (1978) Biochem. J. 175, 793-800] behaves as an exceedingly poor beta-lactamase, hydrolysing benzylpenicillin into benzylpenicilloate 5 x 10(-6)-fold less rapidly than does the exocellular beta-lactamase. To all appearances, the beta-lactamase has no bivalent cation requirement whereas, as shown elsewhere [Dideberg, Charlier, Dupont, Vermeire, Frère & Ghuysen (1980) FEBS Lett. 117, 212-214, and Dideberg, Joris, Frère, Ghuysen, Weber, Robaye, Delbrouck & Roelands (1980) FEBS Lett. 117, 215-218], the DD-carboxypeptidase possesses one essential Zn2+ ion per molecule. Peptide 'mapping' and immunological studies suggest that the two Streptomyces enzymes probably have very different structural and mechanistic properties.  相似文献   

11.
The specificity constant, kcat/Km, for the hydrolysis of hippuryl-mercaptoacetate by crystals of the Streptomyces R61 D-D peptidase was measured by reaction of the thiol produced with 4,4'-dithiodipyridine. The values of kcat/Km for the crystal and in solution were the same (within experimental error). A novel method for treating the lag in the progress curves was developed.  相似文献   

12.
13.
Homology searches and amino acid alignments, using the Streptomyces R61 DD-peptidase/penicillin-binding protein as reference, have been applied to the beta-lactamases of classes A and C, the Oxa-2 beta-lactamase (considered as the first known member of an additional class D), the low-Mr DD-peptidases/penicillin-binding proteins (protein no. 5 of Escherichia coli and Bacillus subtilis) and penicillin-binding domains of the high-Mr penicillin-binding proteins (PBP1A, PBP1B, PBP2 and PBP3 of E. coli). Though the evolutionary distance may vary considerably, all these penicillin-interactive proteins and domains appear to be members of a single superfamily of active-site-serine enzymes distinct from the classical trypsin or subtilisin families. The amino acid alignments reveal several conserved boxes that consist of strict identities or homologous amino acids. The significance of these boxes is highlighted by the known results of X-ray crystallography, chemical derivatization and site-directed-mutagenesis experiments.  相似文献   

14.
An 11,450-base DNA fragment containing the gene for the extracellular active-site serine DD-peptidase of Streptomyces R61 was cloned in Streptomyces lividans using the high-copy-number plasmid pIJ702 as vector. Amplified expression of the excreted enzyme was observed. Producing clones were identified with the help of a specific antiserum directed against the pure DD-peptidase. The coding sequence of the gene was then located by hybridization with a specific nucleotide probe and sub-fragments were obtained from which the nucleotide sequence of the structural gene and the putative promoter and terminator regions were determined. The sequence suggests that the gene codes for a 406-amino-acid protein precursor. When compared with the excreted, mature DD-peptidase, this precursor possesses a cleavable 31-amino-acid N-terminal extension which has the characteristics of a signal peptide, and a cleavable 26-amino-acid C-terminal extension. On the basis of the data of Joris et al. (following paper in this journal), the open reading frame coding for the synthesis of the DD-peptidase was established. Comparison of the primary structure of the Streptomyces R61 DD-peptidase with those of several active-site serine beta-lactamases and penicillin-binding proteins of Escherichia coli shows homology in those sequences that comprise the active-site serine residue. When the comparison is broadened to the complete amino acid sequences, significant homology is observed only for the pair Streptomyces R61 DD-peptidase/Escherichia coli ampC beta-lactamase (class C). Since the Streptomyces R61 DD-peptidase and beta-lactamases of class A have very similar three-dimensional structures [Kelly et al. (1986) Science (Wash. DC) 231, 1429-1431; Samraoui et al. (1986) Nature (Lond.) 320, 378-380], it is concluded that these tertiary features are probably also shared by the beta-lactamases of class C, i.e. that the Streptomyces R61 DD-peptidase and the beta-lactamases of classes A and C are related in an evolutionary sense.  相似文献   

15.
In order to confirm the Streptomyces codon usage, the Streptomyces R61 DD-peptidase was fragmented by cyanogen bromide cleavage of the carboxymethylated protein, trypsin digestion of the carboxymethylated protein and trypsin digestion of the protein treated with beta-iodopenicillinate and endoxo-delta 4-tetrahydrophthalic acid. The isolated peptides, which altogether represented more than 50% of the polypeptide chain, were sequenced. The data thus obtained were in excellent agreement with the primary structure of the protein as deduced from the nucleotide sequence of the cloned gene. Though a weak acylating agent, beta-iodopenicillanate reacted selectively with the active site of the DD-peptidase and formed an adduct which mas much more stable than that formed with benzylpenicillin, thus facilitating the isolation and characterization of the active-site peptide.  相似文献   

16.
The preparation and use of a new photoactivatable phosphatidylcholine derivative [1-palmitoyl-2-(p-benzoyl)benzoyl phosphatidylcholine] is described. The reagent is shown to be effective in labelling different membrane proteins under irradiation conditions that preserve their enzymic activity. The properties of this new phospholipid analogue suggest that it can be useful in studying several aspects of membrane structure and function.  相似文献   

17.
The specificity of the Streptomyces R61 penicillin-sensitive D-Ala-D-Ala peptidase has been re-examined with the help of synthetic substrates. The products of the transpeptidation reactions obtained with Gly-L-Xaa dipeptides as acceptor substrates are themselves poor substrates of the enzyme. This is in apparent contradiction with the classically accepted specificity rules for D-Ala-D-Ala peptidases. The Gly-L-Xaa dipeptide is regenerated by both the hydrolysis and transpeptidation reactions. The latter reaction is observed when another Gly-L-Xaa peptide or D-Alanine are supplied as acceptors. Utilization of substrates in which the terminal -COO(-) group has been esterified or amidated shows that a free carboxylate is not an absolute prerequisite for activity. The results are discussed in the context of the expected reversibility of the transpeptidation reaction.  相似文献   

18.
The exocellular dd-carboxypeptidase-transpeptidase from Streptomyces R39 was purified to protein homogeneity and in milligram amounts. The isolated enzyme consisted of one polypeptide chain of molecular weight about 53300. Its amino acid composition and several physicochemical properties were determined and compared with those of the exo-cellular dd-carboxypeptidase-transpeptidase from Streptomyces R61.  相似文献   

19.
The interaction between glucagon and dicaprylphosphatidylcholine (DCPC) was studied by fluorescence, circular dichroism and calorimetry, as well as by 1H- and 31P-nuclear magnetic resonance. The water-soluble lipid-protein complex was also characterized by gel filtration and ultracentrifugation. The complex appeared to be monodisperse by sedimentation equilibrium measurements, with a molecular weight of (4.55 ± 0.57)·104. This complex contained approximately 7 molecules of glucagon and 35 molecules of phospholipid. Proton-decoupled 31P-NMR spectra of the phospholipid in the lipid-protein complex display narrower resonances than those of sonicated vesicles of DCPC, and 1H-31P coupling could be detected in proton coupled spectra. These NMR results, together with gel-filtration results, suggest that glucagon ‘solubilizes’ phospholipid aggregates, forming a lipid-protein complex which is smaller than sonicated preparations of DCPC. 1H-NMR resonance of both the methionine methyl group (met-27) and the aromatic envelope of glucagon are broadened by the phospolipid, indicating that the C-terminal region and the aromatic residues are involved in the interaction with the phospholipid. Nuclear magnetic resonance titrations of the imidazole ring C(2) and C(4) protons of the histidine residue of glucagon show that DCPC lowers the pK of the imidazole. The alterations caused by the phospholipid in the far and near ultraviolet CD spectra of glucagon reflect, respectively, the increased helix content of the hormone and the fact that the aromatic residues are located in a more structured environment. The phospholipid also alters the fluorescence properties of glucagon, shifting the fluorescence emission maximum of the hormone to shorter wavelength, and enhancing its relative intensity. This suggests that the fluorophore is experiencing a more hydrophobic environment in the presence of the lipid. Binding of glucagon to the phospholipid was analysed by Scatchard plots of the enhancement of fluorescence caused by the phospholipid and showed that the equilibrium binding constants of glucagon to DCPC are (4.4 ± 0.5)·104M?1 and (7.5±0.5)·104M?1, at 15°C and 25°C, respectively. The average number of moles of phospholipid bound per mole of glucagon is 4.4±0.6. The isothermal enthalpy of reaction of glucagon with DCPC is ?20.5 kcal/mol of glucagon at 25°C and ?32.5 kcal/mol of glucagon at 15°C. The observed enthalpies can arise from glucagon-induced cyrstallization of the phospholipid, from the non-covalent interactions between the peptide and lipid as well as from the lipid-induced conformational change in the protein. These results demonstrate that, unlike the complexes formed between glucagon and phospholipids which form more stable bilayers, the complex formed between glucagon and DCPC is stable over a wide range of temperatures, including temperatures well above the phase transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号