首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Sml1p is small protein that binds to and inhibits the activity of ribonucleotide reductase (RNR)3, a protein enzyme complex that controls the balance and level of the cellular deoxynucleotide diphosphate pools that are critical for DNA synthesis and repair. In this respect, Sml1p is a checkpoint protein whose function is to regulate the activity of the large subunit of RNR (Rnr1p). Sml1p is thought to be regulated by the MEC1/RAD53 cell cycle checkpoint pathway. Neither the structure of Sml1p nor its complex to Rnr1p is well known. In this report, we describe how a recombinant Sml1p-histag protein (in both monomeric and dimeric forms) can be characterized with electrospray mass spectrometry. Mass spectrometry can play a vital role in the study of the Sml1p-Rnr1p complex by: (1) confirming the identities and purities of recombinant proteins such as Sm1lp-histag (with mass accuracy and resolution far superior to SDS-PAGE) and (2) verifying the presence or absence of PTM, chemical modifications, or metal-ion binding to the protein species, which may alter the function and binding of the protein partners.  相似文献   

2.
3.
In budding yeast, MEC1 and RAD53 are essential for cell growth. Previously we reported that mec1 or rad53 lethality is suppressed by removal of Sml1, a protein that binds to the large subunit of ribonucleotide reductase (Rnr1) and inhibits RNR activity. To understand further the relationship between this suppression and the Sml1-Rnr1 interaction, we randomly mutagenized the SML1 open reading frame. Seven mutations were identified that did not affect protein expression levels but relieved mec1 and rad53 inviability. Interestingly, all seven mutations abolish the Sml1 interaction with Rnr1, suggesting that this interaction causes the lethality observed in mec1 and rad53 strains. The mutant residues all cluster within the 33 C-terminal amino acids of the 104-amino-acid-long Sml1 protein. Four of these residues reside within an alpha-helical structure that was revealed by nuclear magnetic resonance studies. Moreover, deletions encompassing the N-terminal half of Sml1 do not interfere with its RNR inhibitory activity. Finally, the seven sml1 mutations also disrupt the interaction with yeast Rnr3 and human R1, suggesting a conserved binding mechanism between Sml1 and the large subunit of RNR from different species.  相似文献   

4.
Regulation of ribonucleotide reductase (RNR) is important for cell survival and genome integrity in the face of genotoxic stress. The Mec1/Rad53/Dun1 DNA damage response kinase cascade exhibits multifaceted controls over RNR activity including the regulation of the RNR inhibitor, Sml1. After DNA damage, Sml1 is degraded leading to the up-regulation of dNTP pools by RNR. Here, we probe the requirements for Sml1 degradation and identify several sites required for in vivo phosphorylation and degradation of Sml1 in response to DNA damage. Further, in a strain containing a mutation in Rnr1, rnr1-W688G, mutation of these sites in Sml1 causes lethality. Degradation of Sml1 is dependent on the 26S proteasome. We also show that degradation of phosphorylated Sml1 is dependent on the E2 ubiquitin-conjugating enzyme, Rad6, the E3 ubiquitin ligase, Ubr2, and the E2/E3-interacting protein, Mub1, which form a complex previously only implicated in the ubiquitylation of Rpn4.  相似文献   

5.
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar proteolytic pathway. Depletion of core components of the mitochondrial iron-sulfur cluster assembly leads to a Dun1-dependent diminution of Sml1 protein levels. The physiological relevance of Sml1 downregulation by Dun1 under low-Fe conditions is highlighted by the synthetic growth defect observed between dun1Δ and fet3Δ fet4Δ mutants, which is rescued by SML1 deletion. Consistent with an increase in RNR function, Rnr1 protein levels are upregulated upon Fe deficiency. Finally, dun1Δ mutants display defects in deoxyribonucleoside triphosphate (dNTP) biosynthesis under low-Fe conditions. Taken together, these results reveal that the Dun1 checkpoint kinase promotes RNR function in response to Fe starvation by stimulating Sml1 protein degradation.  相似文献   

6.
Cadmium is a toxic metal, and the mechanism of cadmium toxicity in living organisms has been well studied. Here, we used Saccharomyces cerevisiae as a model system to examine the detailed molecular mechanism of cell growth defects caused by cadmium. Using a plate assay of a yeast deletion mutant collection, we found that deletion of SML1, which encodes an inhibitor of Rnr1, resulted in cadmium resistance. Sml1 protein levels increased when cells were treated with cadmium, even though the mRNA levels of SML1 remained unchanged. Using northern and western blot analyses, we found that cadmium inhibited Sml1 degradation by inhibiting Sml1 phosphorylation. Sml1 protein levels increased when cells were treated with cadmium due to disruption of the dependent protein degradation pathway. Furthermore, cadmium promoted cell cycle progression into the G2 phase. The same result was obtained using cells in which SML1 was overexpressed. Deletion of SML1 delayed cell cycle progression. These results are consistent with Sml1 accumulation and with growth defects caused by cadmium stress. Interestingly, although cadmium treatment led to increase Sml1 levels, intracellular dNTP levels also increased because of Rnr3 upregulation due to cadmium stress. Taken together, these results suggest that cadmium specifically affects the phosphorylation of Sml1 and that Sml1 accumulates in cells.  相似文献   

7.
Rad53 is a conserved protein kinase with a central role in DNA damage response and nucleotide metabolism. We observed that the expression of a dominant-lethal form of RAD53 leads to significant expression changes for at least 16 genes, including the RNR3 and the HUG1 genes, both of which are involved in the control of nucleotide metabolism. We established by multiple biophysical and biochemical approaches that Hug1 is an intrinsically disordered protein that directly binds to the small RNR subunit Rnr2. We characterized the surface of interaction involved in Hug1 binding to Rnr2, and we thus defined a new binding region to Rnr2. Moreover, we show that Hug1 is deleterious to cell growth in the context of reduced RNR activity. This inhibitory effect of Hug1 on RNR activity depends on the binding of Hug1 to Rnr2. We propose a model in which Hug1 modulates Rnr2–Rnr1 association by binding Rnr2. We show that Hug1 accumulates under various physiological conditions of high RNR induction. Hence, both the regulation and the mode of action of Hug1 are different from those of the small protein inhibitors Dif1 and Sml1, and Hug1 can be considered as a regulator for fine-tuning of RNR activity.  相似文献   

8.
Sml1 is a small protein in Saccharomyces cerevisiae which inhibits the activity of ribonucleotide reductase (RNR). RNR catalyzes the rate-limiting step of de novo dNTP synthesis. Sml1 is a downstream effector of the Mec1/Rad53 cell cycle checkpoint pathway. The phosphorylation by Dun1 kinase during S phase or in response to DNA damage leads to diminished levels of Sml1. Removal of Sml1 increases the population of active RNR, which raises cellular dNTP levels. In this study using mass spectrometry and site-directed mutagenesis, we have identified the region of Sml1 phosphorylation to be between residues 52 and 64 containing the sequence GSSASASASSLEM. This is the first identification of a phosphorylation sequence of a Dun1 biological substrate. This sequence is quite different from the consensus Dun1 phosphorylation sequence reported previously from peptide library studies. The specific phosphoserines were identified to be Ser(56), Ser(58), and Ser(60) by chemical modification of these residues to S-ethylcysteines followed by collision activated dissociation. To investigate further Sml1 phosphorylation, we constructed the single mutants S56A, S58A, S60A, and the triple mutant S56A/S58A/S60A and compared their degrees of phosphorylation with that of wild type Sml1. We observed a 90% decrease in the relative phosphorylation of S60A compared with that of wild type, a 25% decrease in S58A, and little or no decrease in the S56A mutant. There was no observed phosphate incorporation in the triple mutant, suggesting that Ser(56), Ser(58), and Ser(60) in Sml1 are the sites of phosphorylation. Further mutagenesis studies reveal that Dun1 kinase requires an acidic residue at the +3 position, and there is cooperativity between the phosphorylation sites. These results show that Dun1 has a unique phosphorylation motif.  相似文献   

9.
10.
Photochemically generated hydroxyl radicals were used to map solvent-exposed regions in the C14S mutant of the protein Sml1p, a regulator of the ribonuclease reductase enzyme Rnr1p in Saccharomyces cerevisiae. By using high-performance mass spectrometry to characterize the oxidized peptides created by the hydroxyl radical reactions, amino acid solvent-accessibility data for native and denatured C14S Sml1p that revealed a solvent-excluding tertiary structure in the native state were obtained. The data on solvent accessibilities of various amino acids within the protein were then utilized to evaluate the de novo computational models generated by the HMMSTR/Rosetta server. The top five models initially generated by the server all disagreed with both published nuclear magnetic resonance (NMR) data and the solvent-accessibility data obtained in this study. A structural model adjusted to fit the previously reported NMR data satisfied most of the solvent-accessibility constraints. Through minor adjustment of the rotamers of two amino acid side chains for this latter structure, a model that not only provided a lower energy conformation but also completely satisfied previously reported data from NMR and tryptophan fluorescence measurements, in addition to the solvent-accessibility data presented here, was generated.  相似文献   

11.
The ribonucleotide reductase system in Saccharomyces cerevisiae includes four genes (RNR1 and RNR3 encoding the large subunit and RNR2 and RNR4 encoding the small subunit). RNR3 expression, nearly undetectable during normal growth, is strongly induced by DNA damage. Yet an rnr3 null mutant has no obvious phenotype even under DNA damaging conditions, and the contribution of RNR3 to ribonucleotide reduction is not clear. To investigate the role of RNR3 we expressed and characterized the Rnr3 protein. The in vitro activity of Rnr3 was less than 1% of the Rnr1 activity. However, a strong synergism between Rnr3 and Rnr1 was observed, most clearly demonstrated in experiments with the catalytically inactive Rnr1-C428A mutant, which increased the endogenous activity of Rnr3 by at least 10-fold. In vivo, the levels of Rnr3 after DNA damage never reached more than one-tenth of the Rnr1 levels. We propose that heterodimerization of Rnr3 with Rnr1 facilitates the recruitment of Rnr3 to the ribonucleotide reductase holoenzyme, which may be important when Rnr1 is limiting for dNTP production. In complex with inactive Rnr1-C428A, the activity of Rnr3 is controlled by effector binding to Rnr1-C428A. This result indicates cross-talk between the Rnr1 and Rnr3 polypeptides of the large subunit.  相似文献   

12.
The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.  相似文献   

13.
Rnr4p, a novel ribonucleotide reductase small-subunit protein.   总被引:11,自引:3,他引:8       下载免费PDF全文
Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex.  相似文献   

14.
15.
An X  Zhang Z  Yang K  Huang M 《Genetics》2006,173(1):63-73
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis and is essential in DNA replication and repair. Cells have evolved complex mechanisms to modulate RNR activity during normal cell cycle progression and in response to genotoxic stress. A recently characterized mode of RNR regulation is DNA damage-induced RNR subunit redistribution. The RNR holoenzyme consists of a large subunit, R1, and a small subunit, R2. The Saccharomyces cerevisiae R2 is an Rnr2:Rnr4 heterodimer. Rnr2 generates a diferric-tyrosyl radical cofactor required for catalysis; Rnr4 facilitates cofactor assembly and stabilizes the resulting holo-heterodimer. Upon DNA damage, Rnr2 and Rnr4 undergo checkpoint-dependent, nucleus-to-cytoplasm redistribution, resulting in colocalization of R1 and R2. Here we present evidence that Rnr2 and Rnr4 are transported between the nucleus and the cytoplasm as one protein complex. Tagging either Rnr2 or Rnr4 with a nuclear export sequence causes cytoplasmic localization of both proteins. Moreover, mutations at the Rnr2:Rnr4 heterodimer interface can affect the localization of both proteins without disrupting the heterodimeric complex. Finally, the relocalization of Rnr4 appears to involve both active export and blockage of nuclear import. Our findings provide new insights into the mechanism of DNA damage-induced RNR subunit redistribution.  相似文献   

16.
The ribonucleotide reductase (RNR) complex, composed of a catalytic subunit (RRM1) and a regulatory subunit (RRM2), is thought to be a rate-limiting enzymatic complex for the production of nucleotides. In humans, the Rrm1 gene lies at 11p15.5, a tumor suppressor region, and RRM1 expression in cancer has been shown to predict responses to chemotherapy. Nevertheless, whether RRM1 is essential in mammalian cells and what the effects of its haploinsufficiency are remain unknown. To model RNR function in mice we used a mutation previously described in Saccharomyces cerevisiae (Rnr1-W688G) which, despite being viable, leads to increased interaction of the RNR complex with its allosteric inhibitor Sml1. In contrast to yeast, homozygous mutant mice carrying the Rrm1 mutation (Rrm1WG/WG) are not viable, even at the earliest embryonic stages. Proteomic analyses failed to identify proteins that specifically bind to the mutant RRM1 but revealed that, in mammals, the mutation prevents RRM1 binding to RRM2. Despite the impact of the mutation, Rrm1WG/+ mice and cells presented no obvious phenotype, suggesting that the RRM1 protein exists in excess. Our work reveals that binding of RRM1 to RRM2 is essential for mammalian cells and provides the first loss-of-function model of the RNR complex for genetic studies.  相似文献   

17.
在前期研究中,已发现人瘦素(leptin)在体外再折叠过程中会形成稳定的二聚体,但其二聚化机制尚不清楚. 本研究旨在分析瘦素二聚体的结构特性,并重点研究体外再折叠过程中瘦素二聚化的机制. 相较与瘦素单体,瘦素二聚体保留了约75%免疫活性及15%受体结合活性,同时显示出明显慢的天然电泳迁移率. 圆二色性分析显示,二聚体基本保留了单体α螺旋索结构特征. 还原性及非还原性凝胶电泳分析和自由巯基测定结果表明,瘦素二聚体是由一对分子间二硫键连接2个单体而成的.为了确定瘦素二聚化过程中起主导作用的分子间二硫键,利用PCR定点突变技术构建了C96S和C146S两个突变体瘦素. 通过分析C96S及C146S突变体瘦素的体外再折叠特性及过程,并与野生型瘦素相比较,揭示C96S瘦素的二聚体显示出与野生型瘦素二聚体相似的特性,而C146S瘦素不能形成结构稳定的二聚体. 以上研究结果表明,Cys146-Cys146分子间二硫键在人瘦素二聚化过程中起主导作用.  相似文献   

18.
19.
20.
Ero1p is the primary catalyst of disulfide bond formation in the yeast endoplasmic reticulum (ER). Ero1p contains a pair of essential disulfide bonds that participate directly in the electron transfer pathway from substrate thiol groups to oxygen. Remarkably, elimination of certain other Ero1p disulfides by mutation enhances enzyme activity. In particular, the C150A/C295A Ero1p mutant exhibits increased thiol oxidation in vitro and in vivo and interferes with redox homeostasis in yeast cells by hyperoxidizing the ER. Inhibitory disulfides of Ero1p are thus important for enzyme regulation. To visualize the differences between de-regulated and wild-type Ero1p, we determined the crystal structure of Ero1p C150A/C295A. The structure revealed local changes compared to the wild-type enzyme around the sites of mutation, but no conformational transitions within 25 Å of the active site were observed. To determine how the C150—C295 disulfide nonetheless participates in redox regulation of Ero1p, we analyzed using mass spectrometry the changes in Ero1p disulfide connectivity as a function of time after encounter with reducing substrates. We found that the C150—C295 disulfide sets a physiologically appropriate threshold for enzyme activation by guarding a key neighboring disulfide from reduction. This study illustrates the diverse and interconnected roles that disulfides can play in redox regulation of protein activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号