首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In a case of severe IgG kappa myeloma with cryoglobulinaemia usual concentrations of epinephrine, collagen, ADP, arachidonic acid, thrombin and ristocetin caused no aggregation of platelets in platelet rich plasma. However, in contrast to other agents ristocetin induced platelet aggregation in higher concentrations. The investigations showed, that the aggregating activity was inhibited by binding of ristocetin to the abnormal protein. Following saturation of the monoclonal protein, the surplus ristocetin caused normal aggregation. This indicates that platelets actually preserved their responsiveness to ristocetin. Possible causes of the phenomenon are discussed.  相似文献   

2.
Characterization of the Fc gamma receptor on human platelets   总被引:4,自引:0,他引:4  
IgG-containing immune complexes may play a role in the immune destruction of human platelets by interacting with an Fc gamma receptor on the platelet surface. We studied the platelet Fc gamma receptor and characterized its interaction with IgG ligand and anti-Fc gamma receptor monoclonal antibodies. Oligomers of IgG, but not monomeric IgG, bound to platelets and the number of binding sites was significantly increased at low ionic strength. Ligand-binding studies indicated that normal human platelets express a single Fc gamma receptor (Fc gamma RII) with 8559 +/- 852 sites per cell, Kd = 12.5 +/- 1.7 X 10(-8) M using trimeric IgG. Results of studies with bivalent and Fab monoclonal anti-Fc gamma RII were consistent with each Fc gamma receptor expressing two epitopes recognized by the antibody. The number of Fc gamma binding sites and affinity of binding were unchanged by the presence of 2.0 mM Mg2+ or 10 micrograms/ml cytochalasin B. Platelet stimulation with thrombin or ADP in the presence of fibrinogen also did not alter the number of Fc gamma binding sites or the affinity of binding. However, platelets preincubated with 5 microM dexamethasone expressed a decreased number of Fc gamma binding sites as well as decreased IgG-dependent platelet aggregation. Platelets from patients with Glanzmann's thrombasthenia and from patients with the Bernard Soulier syndrome expressed a normal number and affinity of Fc gamma binding sites. The data suggest that platelet Fc gamma RII binding of trimeric IgG occurs independent of actin filament interaction, Mg2+, ADP, or thrombin and does not require GPIIb/IIIa or GPIIb/IIIa-fibrinogen interaction. Furthermore, this receptor appears to be normally expressed on GPIb-deficient platelets and susceptible to modulation by glucocorticoids. Finally, the Fc gamma-binding protein was isolated from whole platelets as a 220-kDa protein which upon reduction dissociates into 50,000 Mr subunits.  相似文献   

3.
We have reexamined the ability of anti-human IgG antibodies to induce histamine release from human basophils. A panel of purified murine mAbs with International Union of Immunological Societies-documented specificity for each of the four subclasses of human IgG was used. Of the 24 allergic subjects studied, the basophils of 75% (18/24) released greater than 10% histamine to one or more anti-IgG1-4 mAb, whereas none of the 13 nonatopic donor's basophils released histamine after stimulation with optimal amounts of anti-IgG mAb. The basophils of 85% (11/13) of the nonatopic donors did respond to anti-IgE challenge, as did 92% (22/24) of the atopic donor cells. Histamine release was induced most frequently by anti-IgG3, and 10/18 anti-IgG responder cells released histamine with mAb specific for two or more different subclass specificities. The rank order for induction of histamine release was anti-IgG3 greater than anti-IgG2 greater than IgG1 greater than anti-IgG4. As in our previous study using polyclonal anti-IgG, 100- to 300-micrograms/ml quantities of the anti-IgG mAb were required for maximal histamine release, about 1000-fold higher than those for comparable release with anti-human IgE. Specificity studies using both immunoassays and inhibition studies with IgE myeloma protein indicated that anti-IgG induced histamine release was not caused by cross-reactivity with IgE. Ig receptors were opened by lactic acid treatment so that the cells could be passively sensitized. Neither IgE myeloma nor IgG myeloma (up to 15 mg/ml) proteins could restore the response to anti-IgG mAb. However, sera from individuals with leukocytes that released histamine upon challenge with anti-IgG mAb could passively sensitize acid-treated leukocytes from both anti-IgG responder and nonresponder donors for an anti-IgG response. The only anti-IgG mAb that induced release from these passively sensitized cells were those to which the serum donor was responsive. Sera from non-IgG responders could not restore an anti-IgG response. These data led to the hypothesis that the IgG specific mAb were binding to IgG-IgE complexes that were attached to the basophil through IgE bound to the IgE receptor. This was shown to be correct because passive sensitization to anti-IgG could be blocked by previous exposure of the basophils to IgE. We conclude that anti-IgG-induced release occurs as a result of binding to IgG anti-IgE antibodies and cross-linking of the IgE receptors on basophils.  相似文献   

4.
Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in vitro and in vivo presumably by interacting with kappa L chains of the IgE isotype.  相似文献   

5.
Immunocytochemical markers prepared by labelling colloidal gold with antibodies are gaining wide acceptance both in transmission and scanning electron microscopy. However, detailed information on the process and extent of adsorption of IgG and IgE in particular are still lacking. The adsorption isotherm of mouse monoclonal 125I-IgE antibovine milk beta-lactoglobulin was studied quantitatively with colloidal gold buffered at pH 6.1-8.8 (28 nm in particle diameter). At low coverage of the particles (less that or equal to 5 molecules per particle), the isotherm was independent of pH. In the presence of a large excess of IgE, the highest coverage was obtained at pH 6.1 near the pI of IgE (5.2-5.8). The binding constants were higher at low coverage (side-on adsorption) than at high coverage where desorption was observed. IgE-Au markers were unreactive towards the immobilized antigen and did not bind to receptors for IgE of rat basophilic leukemia cells (RBL-1). The reactivity of immobilized anti-IgE antibodies with IgE-Au markers increased as a function of particle coverage. Mapping of RBL-1 cell membrane IgE receptors was achieved by incubating successively IgE-sensitized RBL-1 cells with anti-IgE antibodies and a protein A-gold marker at 4 degrees C. Surface clusters developed when the cells were incubated at 37 degrees C.  相似文献   

6.
The biochemical responses of intact human platelets to the monoclonal antibody (mAb) AG-1 were investigated. AG-1 is a murine IgG mAb that recognizes a series of platelet membrane glycoproteins (Gp) from M(r) 21,000 to 29,000, one of which is the M(r) 24,000 (p24) receptor for anti-CD9 mAbs. AG-1 causes platelet aggregation and secretion. Platelets binding AG-1 demonstrate a dose- and time-dependent breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), production of diacylglycerol, and generation of phosphatidic acid (PA). These events are associated with the activation of protein kinase C (PKC), an increase in intracellular calcium, and fibrinogen binding. Platelet PA generation and PKC activation in response to AG-1 are inhibited by mAbs to platelet GpIIb-IIIa or by extracellular EGTA, but not by a mAb to platelet GpIb or by inhibiting platelet Na+/H+ exchange with 5-(N-ethyl-N-isopropyl)amiloride. Platelet cytoplasmic free calcium ([Ca2+]i) is elevated in response to AG-1, and this elevation is inhibited by mAbs to GpIIb-IIIa, an RGDS peptide or by chelating extracellular calcium. These results suggest that AG-1 binding to a unique platelet-surface glycoprotein initiates platelet responses through the activation of PIP2-specific phospholipase C, and that this occurs through a signal pathway that is dependent on GpIIb-IIIa and extracellular calcium.  相似文献   

7.
Identification of the immunoglobulin G receptor of human platelets   总被引:2,自引:0,他引:2  
The binding site of IgG on human platelets was studied by the use of the cleavable heterobifunctional cross-linking agent N-succinimidyl (4-azidophenyldithio)propionate. Binding characteristics of the derivatized IgG were similar to normal IgG. Periodate-borohydride treatment of platelets also did not significantly alter their ability to bind IgG. N-Succinimidyl (4-azidophenyldithio)propionate was bound to IgG via a succinimidyl ester and then photolyzed in the presence of intact platelets. Their membrane glycoproteins were first tritiated by the periodate-borohydride method. The cross-linked product was analyzed by two dimensional sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The non-reduced first-dimension gels were subjected to 5% 2-mercaptoethanol prior to separation in the second dimension. Such gels were then evaluated by fluorography, silver staining, and counting the radioactivity of sequential gel strips in the area of cross-linking. The protein complexes at the interface between stacking and running gel were further resolved in isoelectric focusing gels. One IgG-containing band could be identified. After reduction, the constituent proteins of the cross-linked complex were analyzed by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis and subsequent immunoblotting with an antiserum against platelet membrane glycoproteins. All of these studies gave evidence of glycoprotein IIIa as the receptor of IgG. Based on the results of the different experimental approaches, we conclude that glycoprotein IIIa is the IgG receptor in human platelets.  相似文献   

8.
Platelet activation is accompanied by the appearance on the platelet surface of approximately 45,000 receptor sites for fibrinogen. The binding of fibrinogen to these receptors is required for platelet aggregation. Although it is established that the fibrinogen receptor is localized to a heterodimer complex of the membrane glycoproteins, IIb and IIIa, little is known about the changes in this complex during platelet activation that result in the expression of the receptor. In the present studies, we have developed and characterized a murine monoclonal anti-platelet antibody, designated PAC-1, that binds to activated platelets, but not to unstimulated platelets. PAC-1 is a pentameric IgM that binds to agonist-stimulated platelets with an apparent Kd of 5 nM. Binding to platelets is dependent on extracellular Ca2+ (KCa = 0.4 microM) but is not dependent on platelet secretion. Platelets stimulated with ADP or epinephrine bind 10,000-15,000 125I-PAC-1 molecules/platelet while platelets stimulated with thrombin bind 20,000-25,000 molecules/platelet. Several lines of evidence indicate that PAC-1 is specific for the glycoprotein IIb.IIIa complex. First, PAC-1 binds specifically to the IIb.IIIa complex on Western blots. Second, PAC-1 does not bind to thrombasthenic platelets or to platelets preincubated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 37 degrees C, both of which lack the intact IIb.IIIa complex. Third, PAC-1 competitively inhibits the binding of 125I-A2A9, and IgG monoclonal antibody that is specific for the IIb.IIIa complex. Fourth, the antibody inhibits fibrinogen-mediated platelet aggregation. These data demonstrate that PAC-1 recognizes an epitope on the IIb.IIIa complex that is located near the platelet fibrinogen receptor. Platelet activation appears to cause a Ca2+-dependent change involving the glycoprotein IIb.IIIa complex that exposes the fibrinogen receptor and, at the same time, the epitope for PAC-1.  相似文献   

9.
A murine monoclonal antibody (MoAb) VM16a specifically binding to human platelets has been produced. Approximately 56,000 molecules of VM16a bound per platelet at saturation (Kd = 7.9 nM) but no binding to platelets from Glanzmann's thrombasthenia patients was detected. VM16a precipitated two proteins with molecular masses corresponding to those of glycoproteins (GP) IIb and IIIa from solubilized surface-labelled platelets. However, after dissociation of the GPIIb--IIIa complex with EDTA VM16a did not bind to platelets and precipitated nothing from their lysate, thus evidencing that its determinant is complex-dependent. VM16a had no effect on ADP-, thrombin- and ristocetin-induced platelet aggregation but inhibited the aggregation induced by collagen. This inhibitory effect was more pronounced in the presence of plasma. VM16a completely blocked the Fc-receptor-mediated aggregation induced by aggregated human IgG, aggregated murine IgG1 and the previously described MoAb VM58. F(ab')2 fragments of VM16a were also able to inhibit this aggregation by decreasing the rate of aggregation induced by aggregated IgG and by extending the lag phase of VM58-induced aggregation. These results suggest that the platelet Fc-receptor may be topographically associated with the GPIIb-IIIa complex.  相似文献   

10.
A conformation-dependent epitope of human platelet glycoprotein IIIa.   总被引:2,自引:0,他引:2  
This study explores conformational states of human platelet glycoprotein IIIa (GP IIIa) and possible mechanisms of fibrinogen receptor exposure. D3GP3 is an IgG1, kappa monoclonal antibody generated against purified GP IIIa and found to be specific for GP IIIa by immunoprecipitation and Western blot analysis. The binding of D3GP3 to resting platelets caused fibrinogen binding (approximately 5,000 molecules/platelet) and platelet aggregation but not secretion. Platelets express 40,000-50,000 GP IIb-IIIa molecules in their surface membranes. However, resting platelets only bound approximately 5,000 D3GP3 molecules/platelet. D3GP3 binding to platelets could be increased 2-3-fold by dissociation of the GP IIb-IIIa complex with 5 mM EDTA or by occupying the fibrinogen receptor with either RGDS peptides or fibrinogen. Platelet stimulation with ADP in the absence of fibrinogen did not cause increased D3GP3 binding above control levels. These data suggest that 1) GP IIb-IIIa can exist in multiple conformations in the platelet membrane, 2) D3GP3 binding to GP IIIa can expose the fibrinogen receptor, 3) the binding of either RGDS peptides or fibrinogen causes exposure of the D3GP3 epitope, and 4) platelet activation in the absence of ligand does not induce the same conformational changes in GP IIb-IIIa as does receptor occupancy by RGDS peptides or fibrinogen.  相似文献   

11.
Disturbed haemostasis is a central finding in severe Streptococcus pyogenes infection. In particular, microthrombi are found both at the local site of infection and at distant sites. Platelets are responsible for maintaining vascular function and haemostasis. We report here that M1 protein of S. pyogenes triggers immune-mediated platelet activation and thrombus formation. M1 protein is released from the bacterial surface and forms complexes with plasma fibrinogen. These complexes bind to the fibrinogen receptor on resting platelets. When these complexes also contain immunoglobulin G (IgG) against M1 protein, this will engage the Fc receptor on the platelets and activation will occur. Activation of the platelets leads to platelet aggregation and the generation of platelet-rich thrombi. Neutrophils and monocytes are in turn activated by the platelets. Platelet thrombi are deposited in the microvasculature, and aggregated platelets, IgG and M1 protein colocalize in biopsies from patients diagnosed with S. pyogenes toxic shock syndrome. This chain of events results in a pro-coagulant and pro-inflammatory state typical of severe S. pyogenes infection.  相似文献   

12.
Interaction of platelet factor 4 with human platelets   总被引:6,自引:0,他引:6  
Human washed resting platelets bound 125I-labeled platelet factor 4 in a reaction which was saturable and approached equilibrium within 15-30 min. Scatchard plot analysis of the binding isotherms suggested a single class of specific binding sites. Excess of unlabeled protein and low- and high-affinity heparin competed for platelet factor 4 binding sites on the platelet surface and caused a partial displacement of this molecule. Anti-platelet factor 4 Fab fragments caused inhibition of binding of 125I-platelet factor 4 to platelets. Most of the labeled platelet factor 4 which was bound to intact platelets was recovered in the Triton X-100-insoluble cytoskeletal fraction prepared from the same platelets after their stimulation by thrombin. The association with the cytoskeleton was inhibited by anti-platelet factor 4 Fab fragments and by low-affinity heparin. Anti-platelet factor 4 125I-labeled Fab fragments bound to resting platelets, and this binding was greatly increased following platelet stimulation with thrombin. This suggested that endogenously secreted platelet factor 4 also binds to the platelet surface. No significant binding to platelets of 125I-labeled beta-thromboglobulin and 125I-labeled anti-beta-thromboglobulin Fab fragments was observed. Fab fragments of monospecific anti-human platelet factor 4 antibody raised in rabbits inhibited platelet aggregation and secretion induced by low concentrations of thrombin. Fab fragments of anti-beta-thromboglobulin antibody had no inhibitory effect. We suggest that the binding of alpha-granule-derived platelet factor 4 to the specific sites on the surface of platelets may modulate platelet aggregation and secretion induced by low levels of platelet agonists.  相似文献   

13.
A solid-phase immunoassay has been developed for human immunoglobulin (Ig) E. The specific binding of 125I-labeled protein A (125I-PA) to the Fc region of rabbit IgG anti-IgE served as a quantitative measure of specific anti-IgE antibody bound to the IgE beads under optimal assay conditions. Inhibition of antibody binding by known amounts of standard IgE was reflected in a decreased binding of 125I-PA. The degree of inhibition of 125I-PA binding was related to the amount of fluid-phase IgE present and gave a standard curve which was used to determine the concentration of IgE in test samples. The sensitivity of this method and a double antibody radioimmunoassay (RIA), which was developed using the same IgE preparation and anti-IgE antibody, was approximately the same. These assays gave similar results when used to determine levels of IgE in normal human sera that had been absorbed with protein A—Sepharose to remove components responsible for specific and nonspecific interference in the assays.  相似文献   

14.
Staphylococcus aureus is an important cause of infective endocarditis (IE) in patients without a history of prior heart valve damage. The ability to stimulate the activation of resting platelets and their subsequent aggregation is regarded as an important virulence factor of bacteria that cause IE. Clumping factor A is the dominant surface protein responsible for platelet activation by S. aureus cells in the stationary phase of growth. This study used Lactococcus lactis as a surrogate host to study the mechanism of ClfA-promoted platelet activation. Expression of ClfA from a nisin-inducible promoter demonstrated that a minimum level of surface-expressed ClfA was required. Using platelets that were purified from plasma, the requirement for both bound fibrinogen and immunoglobulin was demonstrated. The immunoglobulin G (IgG) requirement is consistent with the potent inhibition of platelet activation by a monoclonal antibody specific for the platelet FcgammaRIIa receptor. Furthermore the IgG must contain antibodies specific for the ClfA A domain. A model is proposed whereby bacterial cells armed with a sufficient number of surface-bound fibrinogen molecules can engage resting platelet glycoprotein GPIIb/IIIa, aided by bound IgG molecules, which encourages the clustering of FcgammaRIIa receptors. This can trigger activation of signal transduction leading to activation of GPIIb/IIIa and aggregation of platelets. In addition, analysis of a mutant of ClfA totally lacking the ability to bind fibrinogen revealed a second, although less efficient, mechanism of platelet activation. The fibrinogen-independent pathway required IgG and complement deposition to trigger platelet aggregation.  相似文献   

15.
Pleckstrin is the major substrate of protein kinase C (PKC) in platelets. We sought to determine whether pleckstrin phosphorylation is sufficient to target the soluble protein to binding sites. Permeabilization of platelets by streptolysin O (SLO) was used to separate bound and soluble pleckstrin. Platelets were incubated with phorbol 12-myristate 13-acetate (PMA) and/or guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in the presence of [gamma-(32)P]ATP and SLO. PMA stimulated pleckstrin phosphorylation, but this pleckstrin diffused from permeabilized platelets. Addition of GTP[S] with PMA caused up to 40-50% of pleckstrin to be retained within platelets and enhanced secretion of platelet 5-hydroxytryptamine. PKC alpha pseudosubstrate peptide inhibited pleckstrin phosphorylation, the binding of pleckstrin and secretion. After extraction of permeabilized platelets containing bound pleckstrin with Triton X-100, the protein was solubilized. Thus, phosphorylated pleckstrin was retained in platelets only after activation of GTP-binding proteins that stimulate the formation of membrane-bound pleckstrin ligands. Translocation of pleckstrin may facilitate the associated secretion.  相似文献   

16.
Trigramin, a highly specific inhibitor of fibrinogen binding to platelet receptors, was purified to homogeneity from Trimeresurus gramineus snake venom. Trigramin is a single chain (approximately 9 kDa) cysteine-rich peptide with the Glu-Ala-Gly-Glu-Asp-Cys-Asp-Cys-Gly-Ser-Pro-Ala NH2-terminal sequence. Chymotryptic fragmentation showed the Arg-Gly-Asp sequence in trigramin. Trigramin inhibited fibrinogen-induced aggregation of platelets stimulated by ADP (IC50 = 1.3 X 10(-7)M) and aggregation of chymotrypsin-treated platelets. It did not affect the platelet secretion. Trigramin was a competitive inhibitor of the 125I-fibrinogen binding to ADP-stimulated platelets (Ki = 2 X 10(-8) M). 125I-Trigramin bound to resting platelets (Kd = 1.7 X 10(-7) M; n = 16,500), to ADP-stimulated platelets (Kd = 2.1 X 10(-8) M; n = 17,600), and to chymotrypsin-treated platelets (Kd = 8.8 X 10(-8) M; n = 13,800) in a saturable manner. The number of 125I-trigramin binding sites on thrombasthenic platelets amounted to 2.7-5.4% of control values obtained for normal platelets and correlated with the reduced number of GPIIb-GPIIIa molecules on the platelet surface. EDTA, monoclonal antibodies directed against the GPIIb-GPIIIa complex, and synthetic peptides (Arg-Gly-Asp-Ser and Tyr-Gly-Gln-Gln-His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val) blocked both 125I-fibrinogen binding and 125I-trigramin binding to platelets. Fibrinogen binding was more readily inhibited by these compounds than was trigramin binding. Monoclonal antibodies directed either against GPIIb or GPIIIa molecules did not block the interaction of either ligand with platelets. Reduced, S-pyridylethyl, trigramin did not inhibit platelet aggregation and fibrinogen binding to platelets and it did not bind to platelets, suggesting that the secondary structure of this molecule is critical for expression of its biological activity.  相似文献   

17.
Activation of human platelets by a stimulatory monoclonal antibody   总被引:4,自引:0,他引:4  
The clinical significance of the interaction of antibodies with circulating platelets is well documented, but the mechanisms underlying these interactions are not fully known. Here we describe the characterization of anti-human platelet membrane protein monoclonal antibody (mAb) termed F11. Interaction of mAb F11 with human platelets resulted in dose-dependent granular secretion, measured by [14C]serotonin and ATP release, fibrinogen binding and aggregation. Analysis of the specific binding of mAb F11 to platelets revealed a high affinity site with 8,067 +/- 1,307 sites per platelet with a dissociation constant (Kd) of 2.7 +/- 0.9 x 10(-8) M. Two membrane proteins of 32,000 and 35,000 daltons, identified by Western blotting, were recognized by mAb F11. Incubation of 32Pi-labeled platelets with mAb F11 resulted in rapid phosphorylation of intracellular 40,000- and 20,000-dalton proteins, followed by dephosphorylation of these proteins. Monovalent Fab fragments or Fc fragments of mAb F11 IgG did not induce platelet aggregation or secretion; however, Fab fragments of mAb F11 IgG blocked mAb F11-induced platelet aggregation and the binding of 125I-mAb F11 to platelets. The addition of an anti-GPIIIa monoclonal antibody (mAb G10), which inhibits 125I-fibrinogen binding and platelet aggregation, completely blocked mAb F11-induced [14C]serotonin secretion and aggregation but not the binding of 125I-mAb F11 to platelets. mAb G10 also inhibited the increase in the phosphorylation of the 40,000- and 20,000-dalton proteins induced by mAb F11. These results implicate the involvement of the GPIIIa molecule in the chain of biochemical events involved in the induction of granular secretion.  相似文献   

18.
Our results support the hypothesis that binding the low affinity Fc epsilon R (Fc epsilon R-II, CD23) on IgE-secreting B cells, directly suppresses IgE production. IgE production from AF-10/U266 (a human IgE plasmacytoma) decreased upon incubation with anti-IgE mAb or IgE:anti-IgE immune complexes (IgE-IC). Synthesis was suppressed a maximum of 51% with 10 micrograms/ml of IgE-IC after a 24-h incubation. Spontaneous in vitro IgE synthesis from the B cells of highly atopic individuals was also inhibited in a similar fashion. This effect was isotype specific as IgA or IgG immune complexes did not alter IgE production from AF-10 nor did IgE-IC affect IgA or IgG synthesis from lymphoblastoid cell lines making IgG (GM1500 and RPMI 8866) or IgA (GM1056). U266/AF-10 cells displayed both membrane IgE (greater than 90%) and Fc epsilon R-II (23%). To evaluate the role of these membrane proteins in the observed suppression of IgE synthesis, we treated U266/AF-10 cells with IgE-IC that bound Fc epsilon R-II but could not bind membrane IgE, as the mAb used was directed against an idiotypic determinant on the myeloma IgE (PS) used to make the IgE-IC. Suppression was maximal (greater than 50%) with these complexes at 0.1 micrograms/ml and at a 1/1 ratio of mAb anti-IgE to human myeloma IgE. When IgE-IC were used that were constructed with heat denatured IgE or F(ab')2 fragments of IgE, suppression was abrogated indicating IgE-Fc epsilon R binding was required. Neither PS IgE nor mAb 5.1 (the components of IgE-IC) alone affected IgE synthesis. Furthermore, a mAb binding directly to CD23 suppressed IgE synthesis from AF-10 up to 60%. Using limiting dilution analysis, we determined that IgE production per AF-10 cell was constant (0.9 pg/cell/24 h), independent of cell density and cells incubated with IgE-IC were uniformly suppressed. To clarify the mechanism of IgE-IC-induced suppression on AF-10 cells, we assessed both the proliferative rate and cell cycle distribution upon incubation with IgE-IC. There was no correlation between IgE production and [3H]TdR incorporation by AF-10 cells incubated with IgE-IC or anti-CD23 mAb. The distribution of cells within the cell cycle was unaffected by these treatments, with 60% of the cells in G1. These results define a direct role for the Fc epsilon R-II on B cells in the regulation of ongoing IgE synthesis.  相似文献   

19.
Recently we have found that propolypeptide of von Willebrand factor (pp-vWF) obtained from platelets binds to type I collagen. It is known that pp-vWF is present in platelet alpha-granules and is secreted upon activation. In this paper, we demonstrate the two following evidences to show that it is also present on the surface of resting platelets. [1] The antibody against pp-vWF bound to the surface of platelets. [2] The antibody induced aggregation of platelets. The binding of the antibody and the antibody-induced aggregation of platelets were inhibited in a dose-dependent manner by Fab fragment of the antibody. Platelets from von Willebrand disease patients bound less of the antibody and responded weakly to the antibody.  相似文献   

20.
Cardiovascular disease may begin early in adolescence. Platelets release factors contributing to vascular disease. Experiments were designed to test the hypothesis that hormonal transitions associated with sexual maturity differentially affect platelet aggregation and secretion in males and females. Platelets were collected from juvenile (2-3 mo) and sexually mature (adult; 5-6 mo) male and female pigs (n=8/group). Maturation was evidenced by increased weight of reproductive tissue and changes in circulating levels of gonadal hormones. Aggregation to ADP (10 microM) and collagen (6 microg/ml) and ATP secretion to 50 nM thrombin were determined by turbidimetric analysis and bioluminescence, respectively. Total platelet counts, platelet turnover, and mean platelet volume did not change with maturity. Platelet aggregation and ATP secretion decreased in females but increased in males with maturity, whereas total ATP content remained unchanged in platelets from females but increased in platelets from males. Platelet fibrinogen receptor, P-selectin expression, and receptors for sex steroids did not change with sexual maturation. Plasma C-reactive protein and brain-type natriuretic peptide also did not change. Results indicate that changes in platelet aggregation and secretion change with sexual maturity differently in females and males. These observations provide evidence on which clinical studies could be designed to examine platelet characteristics in human children and young adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号