首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We provide direct evidence for the presence of unsulfated, but fully elongated heparan glycosaminoglycans covalently linked to the protein core of a heparan sulfate proteoglycan synthesized by human colon carcinoma cells. Chemical and enzymatic studies revealed that a significant proportion of these chains contained glucuronic acid and N-acetylated glucosamine moieties, consistent with N-acetylheparosan, an established precursor of heparin and heparan sulfate. The presence of unsulfated chains was not dependent upon the exogenous supply of sulfate since their synthesis, structure, or relative amount did not vary with low exogenous sulfate concentrations. Culture in sulfate-free medium also failed to generate undersulfated heparan sulfate-proteoglycan, but revealed an endogenous source of sulfate which was primarily derived from the catabolism of the sulfur-containing amino acids methionine and cysteine. Furthermore, the presence of unsulfated chains was not due to a defect in the sulfation process because pulse-chase experiments showed that they could be converted into the fully sulfated chains. However, their formation was inhibited by limiting the endogenous supply of hexosamine. The results also indicated the coexistence of the unsulfated and sulfated chains on the same protein core and further suggested that the sulfation of heparan sulfate may occur as an all or nothing phenomenon. Taken together, the results support the current biosynthetic model developed for the heparin proteoglycan in which unsulfated glycosaminoglycans are first elongated on the protein core, and subsequently modified and sulfated. These data provide the first evidence for the presence of such an unsulfated precursor in an intact cellular system.  相似文献   

2.
A chondroitin sulfate - dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by β-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

3.
A chondroitin sulfate-dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by beta-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

4.
《The Journal of cell biology》1990,111(6):3165-3176
Two mAbs raised against the 64-kD core protein of a membrane heparan sulfate proteoglycan from human lung fibroblasts also recognize a nonhydrophobic proteoglycan which accumulates in the culture medium of the cells. Pulse-chase studies suggest that the hydrophobic cell- associated forms act as precursors for the nonhydrophobic medium- released species. The core proteins of the medium-released proteoglycans are slightly smaller than those of the hydrophobic cell- associated species, but the NH2-terminal amino acid sequences of both forms are identical. The characterization of human lung fibroblast cDNAs that encode the message for these core proteins and the effect of bacterial phosphatidylinositol-specific phospholipase C suggest that the hydrophobic proteoglycan is membrane-anchored through a phospholipid tail. These data identify a novel membrane proteoglycan in human lung fibroblasts and imply that the shedding of this proteoglycan may be related to the presence of the phospholipid anchor.  相似文献   

5.
The biologic properties of two major proteoglycans of bovine aorta, heparan sulfate proteoglycan and chondroitin sulfate-dermatan sulfate proteoglycan were compared. The heparan sulfate proteoglycan was isolated either by elastase digestion or by 4.0 M guanidine hydrochloride extraction, of aorta tissue, fractionated by CsCl isopycnic centrifugation and purified by chondroitinase ABC treatment. The first method resulted in considerably greater yield (about 70% of the total heparan sulfate proteoglycan of the tissue) than the second procedure (12% of total). The chondroitin sulfate-dermatan sulfate proteoglycan was obtained by 4.0 M guanidine-HCl extraction of aorta tissue followed by CsCl isopycnic centrifugation. The chemical composition of both heparan sulfate proteoglycan preparations was similar. Unlike the chondroitin sulfate-dermatan sulfate proteoglycan, which eluted in the void volume of Sepharose CL-6B column, the heparan sulfate proteoglycan preparations were each resolved into a high molecular weight fraction (kav = 0.18 and 0.13) and a low molecular weight fraction (kav = 0.47 and 0.36). The heparan sulfate proteoglycan preparations exhibited significantly more potent anticoagulant and platelet aggregation inhibitory activities than the chondroitin sulfate-dermatan sulfate proteoglycan. The protein core of the proteoglycan molecules did not seem to be essential for their hemostatic properties. The complex forming ability of the heparan sulfate proteoglycan with serum low density lipoproteins (LDL) was much less than that of chondroitin sulfate-dermatan sulfate proteoglycan in the presence and absence of Ca2+. Interaction between heparan sulfate proteoglycan and LDL was also much more sensitive to changes in the ionic strength of the medium than that of chondroitin sulfate-dermatan sulfate proteoglycan and the lipoprotein. Since the total sulfate content of both proteoglycans is almost similar, the smaller molecular size and hence the lower overall charge density of the heparan sulfate proteoglycan appears to be partly responsible for its low affinity for LDL. The differences in biologic properties of the two proteoglycans might have implications in the pathophysiology of cardiovascular diseases.  相似文献   

6.
M G Kinsella  T N Wight 《Biochemistry》1988,27(6):2136-2144
Labeled heparan sulfate proteoglycans (HSPG) were isolated from wounded and confluent cultures of bovine aortic endothelial cells by nondegradative extraction with 4 M guanidine hydrochloride and detergent. HSPG were separated from more highly charged chondroitin or dermatan sulfate proteoglycans by ion-exchange chromatography, and subclasses of different hydrodynamic size were isolated by gel filtration. Three major subclasses of HSPG were characterized structurally with respect to the presence and relative size of protein core, the presence and amount of nonsulfated oligosaccharide, and size and structure of heparan sulfate (HS) chains. The largest (600-800-kDa) HSPG subclass (I), isolated from cell layers and media of confluent cultures, bears 38-kDa HS chains on an apparently heterogeneous class of relatively large glycoprotein cores. HSPG II (150-200 kDa), isolated from cell layer or media, has 22-kDa HS chains and smaller core glycoproteins (less than 50 kDa). HSPG III, the subclass of smallest hydrodynamic size, has 13-kDa HS chains and a glycopeptide core of less than 15 kDa. All subclasses bear varying proportions of non-sulfated oligosaccharides of similar sizes. Comparisons of HS chain structure indicated that the different subclasses have similar proportions (49-55%) of N-sulfate, with both O-sulfate and highly N-sulfated blocks of disaccharide distributed similarly along HS chains. In addition, HS chains from subclasses II and III contain sequences that are insensitive to periodate oxidation or heparitinase digestion, suggesting that they contain increased proportions of iduronate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cloned bovine aortic endothelial cells were cultured with [35S]Na2SO4 and proteolyzed extensively with papain. Radiolabeled heparan sulfate was isolated by DEAE-Sephacel chromatography. The mucopolysaccharide was then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate, which bound tightly to the protease inhibitor, represented 0.84% of the mucopolysaccharide mass, accounted for greater than 99% of the initial anticoagulant activity, and exhibited a specific activity of 1.16 USP units/10(6) 35S-cpm. However, the heparan sulfate that interacted minimally with the protease inhibitor constituted greater than 99% of the mucopolysaccharide mass, represented less than 1% of the starting biologic activity, and possessed a specific anticoagulant potency of less than 0.0002 USP unit/10(6) 35S-cpm. An examination of the disaccharide composition of the two populations revealed that the high-affinity heparan sulfate contained a 4-fold or greater amount of GlcA----GlcN-SO3-3-O-SO3 (where GlcA is glucuronic acid), which is a marker for the antithrombin-binding domain of commercial heparin, as compared with the depleted material. Cloned bovine aortic endothelial cells were incubated with [35S]Na2SO4 as well as tritiated amino acids and completely solubilized with 4 M guanidine hydrochloride and detergents. The double-labeled proteoglycans were isolated by DEAE-Sephacel, Sepharose CL-4B, and octyl-Sepharose chromatography. These hydrophobic macromolecules were then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate proteoglycans which bound tightly to the protease inhibitor represented less than 1% of the starting material and exhibited a specific anticoagulant activity as high as 21 USP units/10(6) 35S-cpm, whereas the heparan sulfate proteoglycan that interacted weakly with the protease inhibitor constituted greater than 99% of the starting material and possessed a specific anticoagulant potency as high as 0.02 USP unit/10(6) 35S-cpm. The high-affinity heparan sulfate proteoglycan is responsible for more than 85% of the anticoagulant activity of the cloned bovine aortic endothelial cells. Binding studies conducted with 125I-labeled antithrombin demonstrated that these biologically active proteoglycans are located on the surface of cloned bovine aortic endothelial cells.  相似文献   

8.
A large, low-density form of heparan sulfate proteoglycan was isolated from the Engelbreth-Holm-Swarm (EHS) tumor and demonstrated to bind in immobilized-ligand assays to laminin fragment E3, collagen type IV, fibronectin and nidogen. The first three ligands mainly recognize the heparan sulfate chains, as shown by inhibition with heparin and heparan sulfate and by the failure to bind to the proteoglycan protein core. Nidogen, obtained from the EHS tumor or in recombinant form, binds exclusively to the protein core in a heparin-insensitive manner. Studies with other laminin fragments indicate that the fragment E3 possesses a unique binding site of laminin for the proteoglycan. A major binding site of nidogen was localized to its central globular domain G2 by using overlapping fragments. This allows for the formation of ternary complexes between laminin, nidogen and proteoglycan, suggesting a key role for nidogen in basement-membrane assembly. Evidence is provided for a second proteoglycan-binding site in the C-terminal globule G3 of nidogen, but this interaction prevents the formation of such ternary complexes. Therefore, the G3-mediated nidogen binding to laminin and proteoglycan are mutually exclusive.  相似文献   

9.
Hypotonic stress (HTS) induces various responses in vascular endothelium, but the molecules involved in sensing HTS are not known. To investigate a possible role of heparan sulfate proteoglycan (HSPG) in sensing HTS, we compared the responses of control bovine aortic endothelial cells (BAECs) with those of cells treated with heparinase III, which exclusively degrades HSPG. Tyrosine phosphorylation of 125 kDa FAK induced by HTS (-30%) in control cells was abolished in heparinase III-treated BAECs. The amplitude of the volume-regulated anion channel (VRAC) current, whose activation is regulated by tyrosine kinase, was significantly reduced by the treatment with heparinase III. Also, HTS-induced ATP release through the VRAC pore and the concomitant Ca(2+) transients were significantly reduced in the heparinase III-treated BAECs. In contrast, exogenously applied ATP evoked similar Ca(2+) transients in both control and heparinase III-treated BAECs. The transient formation of actin stress fibers induced by HTS in control cells was absent in heparinase III-treated BAECs. Lysophosphatidic acid (LPA) also induced FAK phosphorylation, actin reorganization and ATP release in control BAECs, but heparinase III did not affect these LPA-induced responses. We conclude from these observations that HSPG is one of the sensory molecules of hypotonic cell swelling in BAECs.  相似文献   

10.
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.  相似文献   

11.
《The Journal of cell biology》1990,111(5):2053-2062
Schwann cells synthesize both hydrophobic and peripheral cell surface heparan sulfate proteoglycans (HSPGs). Previous analysis of the kinetics of radiolabeling suggested the peripheral HSPGs are derived from the membrane-anchored forms (Carey, D., and D. Evans. 1989. J. Cell Biol. 108:1891-1897). Peripheral cell surface HSPGs were purified from phytic acid extracts of cultured neonatal rat sciatic nerve Schwann cells by anion exchange, gel filtration, and laminin-affinity chromatography. Approximately 250 micrograms of HSPG protein was obtained from 2 X 10(9) cells with an estimated recovery of 23% and an overall purification of approximately 2000-fold. SDS-PAGE analysis indicated the absence of non-HSPG proteins in the purified material. Analysis of heparinase digestion products revealed the presence of at least six core protein species ranging in molecular weight from 57,000 to 185,000. The purified HSPGs were used to produce polyclonal antisera in rabbits. The antisera immunoprecipitated a subpopulation of 35SO4- labeled HSPGs that were released from Schwann cells by incubation in medium containing phosphatidylinositol-specific phospholipase C (PI- PLC); smaller amounts of immunoprecipated HSPGs were also present in phytic acid extracts. In the presence of excess unlabeled PI-PLC- released proteins, immunoprecipitation of phytic acid-solubilized HSPGs was inhibited. SDS-PAGE analysis of proteins immunoprecipitated from extracts of [35S]methionine labeled Schwann cells demonstrated that the antisera precipitated an HSPG species that was present in the pool of proteins released by PI-PLC, with smaller amounts present in phytic acid extracts. Nitrous acid degradation of the immunoprecipitated proteins produced a single 67,000-Mr core protein. When used for indirect immunofluorescence labeling, the antisera stained the external surface of cultured Schwann cells. Preincubation of the cultures in medium containing PI-PLC but not phytic acid significantly reduced the cell surface staining. The antisera stained the outer ring of Schwann cell membrane in sections of adult rat sciatic nerve but did not stain myelin or axonal membranes. This localization suggests the HSPG may play a role in binding the Schwann cell plasma membrane to the adjacent basement membrane surrounding the individual axon-Schwann cell units.  相似文献   

12.
Glycosaminoglycan (GAG) was extracted from the porcine thyroid gland with a buffer containing 5.3 M guanidine-HCl and proteolytic enzyme inhibitors and was fractionated by subsequent isodensity CsCl centrifugation. 60% of uronic acid positive materials was accumulated in the bottom one-fourth fraction with high buoyant density. More than 90% of this uronic acid positive material in the thyroid tissue was heparin or heparan sulfate (sensitive to nitrous acid treatment) and the rest was chondroitin sulfate or dermatan sulfate (sensitive to chondroitinase ABC treatment). When the accumulated high buoyant density GAG was analyzed on a Sepharose CL-6-B column, approximately 14% of the heparin sulfate were in the macromolecular portion as a form of proteoglycan because it was destroyed by the papain digestion or alkaline borohydride treatment which extensively digests protein or releases GAG from protein by the elimination reaction, respectively. This study demonstrates the existence of heparin sulfate proteoglycan in thyroid tissue for the first time.  相似文献   

13.
Kleinschmidt spreading, negative staining, and rotary shadowing were used to examine the large form of (basement membrane) heparan sulfate proteoglycan in the electron microscope. Heparan sulfate proteoglycan was visualized as consisting of two parts: the core protein and, emerging from one end of the core protein, the glycosaminoglycan side chains. The core protein usually appeared as an S-shaped rod with about six globules along its length. Similar characteristics were observed in preparations of core protein in which the side chains had been removed by heparitinase treatment ("400-kDa core") as well as in a 200-kDa trypsin fragment ("P200") derived from one end of the core protein. The core protein was sensitive to lyophilization and apparently also to the method of examination, being condensed following Kleinschmidt spreading (length means = 52 nm) and extended following negative staining (length means = 83 nm) or rotary shadowing (length means = 87 nm; 400-kDa core length means = 80 nm; P200 length means = 44 nm). Two or three glycosaminoglycan side chains (length means = 146 +/- 53 nm) were attached to one end of the core protein. The side chains often appeared tangled or to merge together as one. Thus, the large heparan sulfate proteoglycan from basement membrane is an asymmetrical molecule with a core protein containing globular domains and terminally attached side chains. This structure is in keeping with that previously predicted by enzymatic digestions and with the proposed orientation in basement membranes, i.e., the core protein bound in the lamina densa and the heparan sulfate side chains in the lamina lucida arranged along the surface of the basement membranes.  相似文献   

14.
Recombinant forms of human perlecan domain I were secreted as proteoglycans by stably transfected human 293 cells. A recombinant domain I-only proteoglycan spanned the 95- to 265-kDa region in SDS-PAGE and appeared to be 160 kDa in denaturing gel filtration. Its glycosaminoglycan (GAG) content was approximately 67% heparan sulfate, and its average GAG chain size of 20 kDa suggested that the true molecular mass of the proteoglycan was 90 kDa. Domain I with enhanced green fluorescent protein fused to its C-terminus had an apparent molecular mass of 210-220 kDa and contained approximately 100% heparan sulfate. Its average GAG chain size (also 20 kDa) suggested a true molecular mass of 117 kDa for this proteoglycan. Its sulfate content of 53-77 mol SO2-4 per mole of protein indicated the presence of one sulfate group per 4-7 GAG sugar residues.  相似文献   

15.
A number of transmembrane proteins have been recently reported to be modified by the covalent addition of saturated fatty acids which may contribute to membrane targeting and specific protein-lipid interactions. Such modifications have not been reported in cell-associated heparan sulfate proteoglycans, although these macromolecules are known to be hydrophobic. Here, we report that a cell surface heparan sulfate proteoglycan is acylated with both myristate and palmitate, two long-chain saturated fatty acids. When colon carcinoma cells were labeled with [3H]myristic acid, a significant proportion of the label was shown to be specifically incorporated into the protein core of the proteoglycan. Characterization of fatty acyl moiety in the purified proteoglycan by reverse-phase high pressure liquid chromatography revealed that approximately 60% of the covalently bound fatty acids was myristate. We further show that this relatively rare 14-carbon fatty acid was bound to the protein core via a hydroxylamine- and alkali-resistant amide bond. The remaining 40% was the more common 16-carbon palmitate, which was bound via a hydroxylamine- and alkali-sensitive thioester bond. Palmitate appeared to be added post-translationally and derived in part from intracellular elongation of myristate, a process that occurred within the first two hours and was insensitive to inhibition of protein synthesis. Acylation of heparan sulfate proteoglycan represents a novel modification of this gene product and could play a role in a number of biological functions including specific interactions with membrane receptors and ligand stabilization.  相似文献   

16.
17.
《Analytical biochemistry》1985,148(2):479-484
Procedures employing the commercial preparation of heparitinase were developed for isolating a protein-enriched core molecule from proteoheparan sulfate by selective removal of the heparan sulfate chains. Treatment of proteoheparan sulfate with the enzyme preparation caused seriously extensive degradation owing to the presence of proteolytic activity in the enzyme preparation. This effect could be avoided by using a series of protease inhibitors which prevented proteolytic degradation with less significant effect on the heparitinase activity. Application of the procedures to a purified preparation from the Engelbreth-Holm-Swarm tumor yielded a single protein-enriched core fraction with a molecular weight of approximately 450,000, as ascertained by sodium dodceyl sulfate-gel electrophoresis.  相似文献   

18.
A proteoglycan was isolated from a Morris rat hepatoma by sequential precipitations with ammonium sulfate and cetyl pyridinium chloride followed by chromatography on Sepharose CL-4B and DEAE-cellulose. The proteoglycan has a molecular weight of about 1.5 × 105 with 40,000 molecular weight glycosaminoglycan side chains, identified as heparan sulfate based on resistance to chondroitinase and susceptibility to nitrous acid treatment. Immunological studies showed that the protein core of this proteoglycan is immunologically distinct from a rat yolk sac tumor chondroitin sulfate proteoglycan (Å. Oldberg, E. G. Hayman, and E. Ruoslahti, 1981,J. Biol. Chem.256, 10847–10852), but resembles a heparan sulfate proteoglycan isolated from a basement membrane-producing mouse tumor (J. R. Hassell, P.M. Robey, H.-J. Barrach, J. Wilczek, S. R. Rennard, and G. R. Martin, 1980, Proc. Nat. Acad. Sci. USA77, 4494–4498).  相似文献   

19.
Material containing proteoglycans was extracted from bovine aorta by the dissociative solvent 3.0 m MgCl2. The proteoglycan that remained in solution at low ionic strength was purified by isopycnic CsCl centrifugation (?, 1.75 – 1.89 g/ml). From the lower third of the gradient a proteoglycan was isolated which behaved as a homogeneous material when analyzed by the ultracentrifuge and by electrophoresis on cellulose acetate. The proteoglycan contained 12% protein, 21% uronic acid, and 28% hexosamine. Analyses by hyaluronidase digestion and gas-liquid chromatography of the polysaccharide moieties of the proteoglycan showed a composition of 56% chondroitin 6-sulfate, 20% chondroitin 4-sulfate, and 7% dermatan sulfate. A copolymeric structure for the polysaccharide of the proteoglycan is proposed.  相似文献   

20.
A large heparan sulfate proteoglycan of low buoyant density (p = 1.32 to 1.40 g/cm3 in 6 M-guanidine.HCl) was extracted from a tumor basement membrane with denaturing solvents and purified by chromatography and CsCl gradient centrifugation. Chemical, immunological, physical and electron microscopical analyses have demonstrated a high degree of purity and have allowed us to propose a structural model for this proteoglycan. It is composed of an 80 nm long protein core formed from a single polypeptide chain (Mr about 500,000) with intrachain disulfide bonds. This core is folded into a row of six globular domains of variable size as shown by electron microscopy after rotary shadowing and negative staining. A multidomain structure was confirmed by protease digestion experiments that allowed the isolation of a single heparan sulfate-containing peptide segment representing less than 5% of the total mass of the protein core. Electron microscopy has visualized generally three heparan sulfate chains in each molecule close to each other at one pole of the protein core. The molecular mass and length (100 to 170 nm) of the heparan sulfate chains were found to vary consistently between different preparations. The mass per length ratio (350 nm-1) indicated an extended conformation for the heparan sulfate side-chains. These structural features are distinctly different from those of the high density proteoglycan, suggesting that both forms of basement membrane heparan sulfate proteoglycan are genetically distinct and not derived from a common precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号