首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levine, Benjamin D., and James Stray-Gundersen."Living high-training low": effect of moderate-altitudeacclimatization with low-altitude training on performance.J. Appl. Physiol. 83(1): 102-112, 1997.The principal objective of this study was to test the hypothesisthat acclimatization to moderate altitude (2,500 m) plus training atlow altitude (1,250 m), "living high-training low," improvessea-level performance in well-trained runners more than an equivalentsea-level or altitude control. Thirty-nine competitive runners (27 men,12 women) completed 1) a 2-wklead-in phase, followed by 2) 4 wkof supervised training at sea level; and3) 4 wk of field training camprandomized to three groups: "high-low"(n = 13), living at moderate altitude(2,500 m) and training at low altitude (1,250 m); "high-high"(n = 13), living and training atmoderate altitude (2,500 m); or "low-low"(n = 13), living and training in amountain environment at sea level (150 m). A 5,000-m time trial was theprimary measure of performance; laboratory outcomes included maximalO2 uptake(O2 max), anaerobic capacity (accumulated O2 deficit),maximal steady state (MSS; ventilatory threshold), running economy,velocity at O2 max, and blood compartment volumes. Both altitude groups significantly increased O2 max(5%) in direct proportion to an increase in red cell mass volume(9%; r = 0.37, P < 0.05), neither of which changedin the control. Five-kilometer time was improved by the field trainingcamp only in the high-low group (13.4 ± 10 s), in directproportion to the increase inO2 max(r = 0.65, P < 0.01). Velocity atO2 max andMSS also improved only in the high-low group. Four weeks of livinghigh-training low improves sea-level running performance in trainedrunners due to altitude acclimatization (increase in red cell massvolume and O2 max) and maintenance of sea-level training velocities, mostlikely accounting for the increase in velocity atO2 max and MSS.

  相似文献   

2.
Kleger, Gian-Reto, Peter Bärtsch, Peter Vock, BernhardHeilig, L. Jackson Roberts II, and Peter E. Ballmer. Evidence against an increase in capillary permeability in subjects exposed tohigh altitude. J. Appl. Physiol.81(5): 1917-1923, 1996.A potential pathogenetic cofactor for thedevelopment of acute mountain sickness and high-altitude pulmonaryedema is an increase in capillary permeability, which could occur as aresult of an inflammatory reaction and/or free radical-mediatedinjury to the lung. We measured the systemic albumin escape byintravenously injecting 5 µCi of 125I-labeled albumin and theplasma concentrations of cytokines, F2-isoprostanes (products of lipidperoxidation), and acute-phase proteins in 24 subjects exposed to 4,559 m. Ten subjects developed acute mountain sickness, and four subjectsdeveloped high-altitude pulmonary edema. The transcapillary escaperate of albumin was 6.9 ± 2.0%/h (SD) at low (550 m) and 6.3 ± 1.9%/h at high (4,559 m) altitude (P = 0.23; n = 24). The subjects withhigh-altitude pulmonary edema had a modest but insignificant increasein the transcapillary escape rate of albumin (4.6 ± 1.9%/h at lowvs. 5.7 ± 1.9%/h at high altitude;P = 0.42;n = 4). Plasma concentrations offibrinogen, 1-acidglycoprotein, C-reactive protein, and interleukin-6 were unchanged inthe early phases and significantly increased by the end of theobservation period in the subjects with high-altitude pulmonary edema,whereas tumor necrosis factor- andF2-isoprostanes did not change atall. This suggests that the inflammatory reaction was rather aconsequence than a causative factor of high-altitude pulmonary edema.In summary, these data argue against a dominant role for increasedsystemic capillary permeability in the development of acute mountainsickness and high-altitude pulmonary edema.

  相似文献   

3.
Individual variation in response to altitude training   总被引:7,自引:0,他引:7  
Moderate-altitude living (2,500 m), combined with low-altitude training (1,250 m) (i.e., livehigh-train low), results in a significantly greater improvement inmaximal O2 uptake(O2 max) and performance over equivalent sea-level training. Although the meanimprovement in group response with this "high-low" training modelis clear, the individual response displays a wide variability. Todetermine the factors that contribute to this variability, 39 collegiate runners (27 men, 12 women) were retrospectively divided intoresponders (n = 17) and nonresponders(n = 15) to altitude training on thebasis of the change in sea-level 5,000-m run time determined before andafter 28 days of living at moderate altitude and training at either lowor moderate altitude. In addition, 22 elite runners were examinedprospectively to confirm the significance of these factors in aseparate population. In the retrospective analysis, respondersdisplayed a significantly larger increase in erythropoietin (Epo)concentration after 30 h at altitude compared withnonresponders. After 14 days at altitude, Epo was still elevated inresponders but was not significantly different from sea-level values innonresponders. The Epo response led to a significant increase in totalred cell volume andO2 max in responders; in contrast, nonresponders did not show a difference in total red cellvolume or O2 maxafter altitude training. Nonresponders demonstrated a significantslowing of interval-training velocity at altitude and thus achieved asmaller O2 consumption during those intervals, compared with responders. The acute increases in Epoand O2 maxwere significantly higher in the prospective cohort of responders,compared with nonresponders, to altitude training. In conclusion, aftera 28-day altitude training camp, a significant improvement in 5,000-mrun performance is, in part, dependent on1) living at a high enough altitudeto achieve a large acute increase in Epo, sufficient to increase thetotal red cell volume andO2 max, and2) training at a low enough altitudeto maintain interval training velocity andO2 flux near sea-level values.

  相似文献   

4.
Kayar, Susan R., and Erich C. Parker. Oxygen pulse inguinea pigs in hyperbaric helium and hydrogen. J. Appl. Physiol. 82(3): 988-997, 1997.We analyzedO2 pulse, the total volume of O2 consumed per heart beat, inguinea pigs at pressures from 10 to 60 atmospheres. Animals were placedin a hyperbaric chamber and breathed 2%O2 in either helium (heliox) orhydrogen (hydrox). Oxygen consumption rate(O2) was measured by gaschromatographic analysis. Core temperature and heart rate were measuredby using surgically implanted radiotelemeters. TheO2 was modulated over afourfold range by varying chamber temperature from 25 to 36°C. There was a direct correlation betweenO2 and heartrate, which was significantly different for animals in heliox vs.hydrox (P = 0.003). By usingmultivariate regression analysis, we identified variables that weresignificant to O2 pulse: bodysurface area, chamber temperature, core temperature, and pressure.After normalizing for all nonpressure variables, the residualO2 pulse was found to decreasesignificantly (P = 0.02) with pressurefor animals in heliox but did not decrease significantly(P = 0.38) with pressure for animalsin hydrox over the range of pressures studied. This amounted to aroughly 25% lower O2 pulse fornormothermic animals in 60 atmospheres heliox vs. hydrox. These resultssuggest that reduction of cardiovascular efficiency in a hyperbaricenvironment can be mitigated by the choice of breathing gas.

  相似文献   

5.
In humans, the hypoxic ventilatory response(HVR) is augmented when preceded by a short hyperoxic exposure (Y. Honda, H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama. J. Appl.Physiol. 81: 1627-1632, 1996). To examine whetherneuronal nitric oxide synthase (nNOS) is involved in such hyperoxia-induced HVR potentiation, 17 male Sprague-Dawley adult ratsunderwent hypoxic challenges (10%O2-5%CO2-balanceN2) preceded either by 10 min ofroom air (O2) or of 100%O2(+O2). At least 48 h later,similar challenges were performed after the animals received theselective nNOS inhibitor 7-nitroindazole (25 mg/kg ip). InO2 runs, minute ventilation(E)increased from 121.3 ± 20.5 (SD) ml/min in room air to 191.7 ± 23.8 ml/min in hypoxia (P < 0.01). After +O2,E increasedfrom 114.1 ± 19.8 ml/min in room air to 218.4 ± 47.0 ml/min inhypoxia (+O2 vs.O2:P < 0.005, ANOVA). After7-nitroindazole administration, HVR was not affected in theO2 treatment group withE increasingfrom 113.7 ± 17.8 ml/min in room air to 185.8 ± 35.0 ml/min inhypoxia (P < 0.01).However, HVR potentiation in+O2-exposed animals was abolished(111.8 ± 18.0 ml/min in room air to 184.1 ± 35.6 ml/min inhypoxia; +O2 vs.O2:P not significant). We conclude that in the conscious rat nNOS activation mediates essential components ofthe HVR potentiation elicited by a previous short hyperoxic exposure.

  相似文献   

6.
Nitric oxide (NO) production by inducible NO synthase (iNOS) is dependent on O2 availability. The duration and degree of hypoxia that limit NO production are poorly defined in cultured cells. To investigate short-term O2-mediated regulation of NO production, we used a novel forced convection cell culture system to rapidly (response time of 1.6 s) and accurately (±1 Torr) deliver specific O2 tensions (from <1 to 157 Torr) directly to a monolayer of LPS- and IFN-stimulated RAW 264.7 cells while simultaneously measuring NO production via an electrochemical probe. Decreased O2 availability rapidly (30 s) and reversibly decreased NO production with an apparent KmO2 of 22 (SD 6) Torr (31 µM) and a Vmax of 4.9 (SD 0.4) nmol·min–1·10–6 cells. To explore potential mechanisms of decreased NO production during hypoxia, we investigated O2-dependent changes in iNOS protein concentration, iNOS dimerization, and cellular NO consumption. iNOS protein concentration was not affected (P = 0.895). iNOS dimerization appeared to be biphasic [6 Torr (P = 0.008) and 157 Torr (P = 0.258) >36 Torr], but it did not predict NO production. NO consumption was minimal at high O2 and NO tensions and negligible at low O2 and NO tensions. These results are consistent with O2 substrate limitation as a regulatory mechanism during brief hypoxic exposure. The rapid and reversible effects of physiological and pathophysiological O2 tensions suggest that O2 tension has the potential to regulate NO production in vivo. inducible nitric oxide synthase; substrate limitation; nitric oxide consumption  相似文献   

7.
Robach, Paul, Daniel Biou, Jean-Pierre Herry, Denis Deberne,Murielle Letournel, Jenny Vaysse, and Jean-Paul Richalet. Recoveryprocesses after repeated supramaximal exercise at the altitude of 4,350 m. J. Appl. Physiol. 82(6):1897-1904, 1997.We tested the hypothesis that prolonged exposureto high altitude would impair the restoration of muscle power duringrepeated sprints. Seven subjects performed two 20-s Wingate tests (WT1and WT2) separated by 5 min of recovery, at sea level (N) and after5-6 days at 4,350 m (H). Mean power output (MPO) andO2 deficit were measured duringWT. O2 uptake(O2) and ventilation(E) were measured continuously. Blood velocity in the femoral artery (FBV) wasrecorded by Doppler ultrasound during recovery. Arterialized blood pHand concentrations of bicarbonate([HCO3]), venousplasma lactate([La]),norepinephrine ([NE]), and epinephrine ([Epi])were measured before and after WT1 and WT2. MPO decreased between WT1and WT2 by 6.9% in N (P < 0.05) andby 10.7% in H (P < 0.01). H did not further decrease MPO. O2 deficitdecreased between WT1 and WT2 in H only(P < 0.01). PeakO2 after WT was reduced by30-40% in H (P < 0.01), butexcess postexercise O2 consumptionwas not significantly lowered in H. During recovery in H compared with N, E,exercise-induced acidosis, and [NE] were higher,[Epi] tended to be higher,[La] was notaltered, and [HCO3] andFBV were lower. The similar[La]accumulation was associated with a higher exercise-induced acidosis anda larger increase in [NE] in H. We concluded from thisstudy that prolonged exposure to high altitude did not significantly impair the restoration of muscle power during repeated sprints, despitea limitation of aerobic processes during early recovery.

  相似文献   

8.
González-Alonso, José, RicardoMora-Rodríguez, Paul R. Below, and Edward F. Coyle.Dehydration markedly impairs cardiovascular function inhyperthermic endurance athletes during exercise. J. Appl. Physiol. 82(4): 1229-1236, 1997.Weidentified the cardiovascular stress encountered by superimposingdehydration on hyperthermia during exercise in the heat and themechanisms contributing to the dehydration-mediated stroke volume (SV)reduction. Fifteen endurance-trained cyclists [maximalO2 consumption(O2 max) = 4.5 l/min] exercised in the heat for 100-120 min and either became dehydrated by 4% body weight or remained euhydrated by drinkingfluids. Measurements were made after they continued exercise at 71%O2 max for 30 minwhile 1) euhydrated with anesophageal temperature (Tes) of38.1-38.3°C (control); 2)euhydrated and hyperthermic (39.3°C);3) dehydrated and hyperthermic withskin temperature (Tsk) of34°C; 4) dehydrated withTes of 38.1°C and Tsk of 21°C; and5) condition4 followed by restored blood volume. Compared withcontrol, hyperthermia (1°C Tesincrease) and dehydration (4% body weight loss) each separatelylowered SV 7-8% (11 ± 3 ml/beat;P < 0.05) and increased heart ratesufficiently to prevent significant declines in cardiac output.However, when dehydration was superimposed on hyperthermia, thereductions in SV were significantly (P < 0.05) greater (26 ± 3 ml/beat), and cardiac output declined 13% (2.8 ± 0.3 l/min). Furthermore, mean arterialpressure declined 5 ± 2%, and systemic vascular resistanceincreased 10 ± 3% (both P < 0.05). When hyperthermia wasprevented, all of the decline in SV with dehydration was due to reducedblood volume (~200 ml). These results demonstrate that thesuperimposition of dehydration on hyperthermia during exercise in theheat causes an inability to maintain cardiac output and blood pressurethat makes the dehydrated athlete less able to cope with hyperthermia.

  相似文献   

9.
Duringventilatory acclimatization to hypoxia (VAH), the relationship betweenventilation (E) and end-tidalPCO2 (PETCO2) changes.This study was designed to determine 1) whether these changes can be seenearly in VAH and 2) if these changesare present, whether the responses differ between isocapnic andpoikilocapnic exposures. Ten healthy volunteers were studied by usingthree 8-h exposures: 1) isocapnichypoxia (IH), end-tidal PO2(PETO2) = 55 Torr andPETCO2 held at thesubject's normal prehypoxic value;2) poikilocapnic hypoxia (PH),PETO2 = 55 Torr; and3) control (C), air breathing. TheE-PETCO2relationship was determined in hyperoxia (PETO2 = 200 Torr) beforeand after the exposures. We found a significant increase in theslopes ofE-PETCO2 relationship after both hypoxic exposures compared with control (IH vs.C, P < 0.01; PH vs. C,P < 0.001; analysis of covariance with pairwise comparisons). This increase was not significantly different between protocols IH andPH. No significant changes in theintercept were detected. We conclude that 8 h of hypoxia, whetherisocapnic or poikilocapnic, increases the sensitivity of the hyperoxicchemoreflex response to CO2.

  相似文献   

10.
León-Velarde, Fabiola, Jean-Paul Richalet, Juan-CarlosChavez, Rachid Kacimi, Maria Rivera-Chira, José-Antonio Palacios, and Daniel Clark. Hypoxia- and normoxia-induced reversibility ofautonomic control in Andean guinea pig heart. J. Appl.Physiol. 81(5): 2229-2234, 1996.We hereindescribe the regulation of cardiac receptors in a typical high-altitudenative animal. Heart rate response to isoproterenol(HRIso)(beats · min1 · mgIso · kg1)and atropine, the density of -adrenergic(AR) and muscarinic (M2) receptors, and theventricular content of norepinephrine (NE) and dopamine (DA) werestudied in guinea pigs (Caviaporcellus). Animals native to Lima, Peru (150 m) werestudied at sea level (SL) and after 5 wk at 4,300-m altitude (SL-HA).Animals native to Rancas [Pasco, Peru (4,300 m)] werestudied at high altitude (HA) and after 5 wk at SL (HA-SL). HA animalshad a lower HRIso, maximum numberof AR binding sites(Bmax),AR dissociation constant (Kd), NE, andDA (P < 0.05) and a higherM2Bmax(P < 0.001) when compared with theSL group. HA-SL showed an increase of theHRIso, ARKd, and NE(P < 0.05) and a decrease of theM2Bmax andKd (P < 0.0001) when compared with theHA group. The present study demonstrates the differential regulationand reversibility of the autonomic control in the guinea pig heart.

  相似文献   

11.
This study examined the scaling relationships ofnet O2 uptake [O2(net) = O2  restingO2] to body mass(MB) andcombined mass (MC = MB + bicycle)during uphill treadmill bicycling. It was hypothesized thatO2(net)(l/min) would scale proportionally withMC [i.e.,O2(net)  M1.0C] and less than proportionally withMB [i.e.,O2(net)  MB].Twenty-five competitive cyclists [73.9 ± 8.8 and 85.0 ± 9.0 (SD) kg forMB andMC,respectively] rode their bicycles on a treadmill at 3.46 m/s andgrades of 1.7, 3.5, 5.2, and 7.0% whileO2 was measured. Multiplelog-linear regression procedures were applied to the pooledO2(net)data to determine the exponents forMC andMB afterstatistically controlling for differences in treadmill grade anddynamic friction. The regression models were highly significant (R2 = 0.95, P < 0.001). Exponents forMC (0.99, 95%confidence interval = 0.80-1.18) andMB (0.89, 95%confidence interval = 0.72-1.07) did not differ significantly fromeach other or 1.0. It was concluded that the 0.99 MC exponent wasdue to gravitational resistance, whereas theMB exponent was<1.0 because the bicycles were relatively lighter for heaviercyclists.

  相似文献   

12.
Hepple, R. T., S. L. M. Mackinnon, J. M. Goodman, S. G. Thomas, and M. J. Plyley. Resistance and aerobic training in oldermen: effects onO2 peak and thecapillary supply to skeletal muscle. J. Appl.Physiol. 82(4): 1305-1310, 1997.Both aerobic training (AT) and resistance training (RT) may increase aerobic power(O2 peak) in theolder population; however, the role of changes in the capillary supplyin this response has not been evaluated. Twenty healthymen (age 65-74 yr) engaged in either 9 wk of lower body RTfollowed by 9 wk of AT on a cycle ergometer (RTAT group) or 18 wk of AT on a cycle ergometer (ATAT group). RT was performedthree times per week and consisted of three sets of four exercises at6-12 repetitions maximum. AT was performed threetimes per week for 30 min at 60-70% heart ratereserve. O2 peak was increasedafter both RT and AT (P < 0.05).Biopsies (vastus lateralis) revealed that the number of capillaries per fiber perimeter length was increased after both AT and RT(P < 0.05), paralleling the changesin O2 peak, whereascapillary density was increased only after AT(P < 0.01). These results, and thefinding of a significant correlation between the change in capillarysupply and O2 peak(r = 0.52), suggest the possibility that similar mechanisms may be involved in the increase ofO2 peak afterhigh-intensity RT and AT in the older population.

  相似文献   

13.
Crawford, Paul, Peter A. Good, Eric Gutierrez, Joshua H. Feinberg, John P. Boehmer, David H. Silber, and Lawrence I. Sinoway. Effects of supplemental oxygen on forearm vasodilation in humans.J. Appl. Physiol. 82(5):1601-1606, 1997.Supplemental O2 reduces cardiac output andraises systemic vascular resistance in congestive heart failure. Inthis study, 100% O2 was given tonormal subjects and peak forearm flow was measured. Inexperiment 1, 100%O2 reduced blood flow andincreased resistance after 10 min of forearm ischemia (flow 56.7 ± 7.9 vs. 47.8 ± 6.7 ml · min1 · 100 ml1;P < 0.02; vascular resistance 1.7 ± 0.2 vs. 2.4 ± 0.4 mmHg · min · 100 ml · ml1;P < 0.03). Inexperiment 2, lower body negativepressure (LBNP; 30 mmHg) and venous congestion (VC) simulatedthe high sympathetic tone and edema of congestive heart failure.Postischemic forearm flow and resistance were measured under fourconditions: room air breathing (RA); LBNP+RA; RA+LBNP+VC; and 100%O2+LBNP+VC. LBNP and VC did notlower peak flow. However, O2raised minimal resistance (2.3 ± 0.4 RA; 2.8 ± 0.5 O2+LBNP+VC,P < 0.04). When O2 alone(experiment 1) was compared withO2+LBNP+VC(experiment 2), no effect of LBNP+VCon peak flow or minimum resistance was noted, although the return rateof flow and resistance toward baseline was increased.O2 reduces peak forearm flow evenin the presence of LBNP and VC.

  相似文献   

14.
The accumulation ofvisceral fat is independently associated with an increased risk forcardiovascular disease. The aim of this study was to determine whetherthe loss of visceral adipose tissue area (VAT; computed tomography) isrelated to improvements in maximal O2 uptake(O2 max) during a weight loss(250-350 kcal/day deficit) and walking (3 days/wk, 30-40 min)intervention. Forty obese [body fat 47 ± 1 (SE) %], sedentary(O2 max 19 ± 1 ml · kg1 · min1)postmenopausal women (age 62 ± 1 yr) participated in the study. The intervention resulted in significant declines in body weight (8%), total fat mass (dual-energy X-ray absorptiometry; 17%), VAT(17%), and subcutaneous adipose tissue area (17%) with no changein lean body mass (all P < 0.001). Women with anaverage 10% increase in O2 max reducedVAT by an average of 20%, whereas those who did not increaseO2 max decreased VAT by only 10%,despite comparable reductions in body fat, fat mass, and subcutaneousadipose tissue area. The decrease in VAT was independently related tothe change in O2 max(r2 = 0.22; P < 0.01) andfat mass (r2 = 0.08; P = 0.05). These data indicate that greater improvements inO2 max with weight loss and walking areassociated with greater reductions in visceral adiposity in obesepostmenopausal women.

  相似文献   

15.
The gaseous composition is an important factor affecting the performance of plant cell cultures. Gaseous metabolites, especially O2, CO2 and C2H4, play important roles in cell physiology. Forced aeration in bioreactors usually results in poor cell growth and secondary metabolite production. In this work, the effects of gaseous metabolites on cell growth, secondary metabolite formation as well as PPO activity were investigated with respect to Stizolobium hassjoo cell culture producing l-DOPA (3,4-dihydroxyphenylalanine). A device allowing the control of the partial pressures of gaseous metabolites in shake flasks was designed. In addition, a recirculating gas system with a PO2 controller was designed for a bioreactor. This device could maintain constant PO2 and PCO2 in the bioreactor headspace. The results showed that the highest l-DOPA content was attained at PO2=0.30 atm. Higher PO2 values retarded cell growth and increased the pH of the culture broth. High PO2 also enhanced the formation of ethylene and inhibited l-DOPA formation. Carbon dioxide concentrations lower than 5% enhanced cell growth and l-DOPA formation. Cell growth was retarded by 0.3 ppm of ethylene in 2~5 carbon dioxide. Oxygen concentration and D.O. in the broth could be controlled at constant levels in the recirculating culture system. Enrichment of PO2 up to 0.3 atm during the later stage of cultivation facilitated l-DOPA formation. The interaction among the gaseous metabolites and their influences on cell metabolism and l-DOPA formation were elucidated. This information will facilitate the rational operation of plant cell culture systems producing secondary metabolites.  相似文献   

16.
Thermogenesis in newborn rats after prenatal or postnatal hypoxia   总被引:3,自引:0,他引:3  
Oxygenconsumption (O2)was measured in normoxia as ambient temperature(Ta) was lowered from 40 to15°C, at the rate of 0.5°C/min (thermoneutrality ~33°C).In 2-day-old rats born in hypoxia after hypoxic gestation, theTa-O2relationship was as in controls; their interscapular brown adiposetissue (IBAT) was hypoplastic (less proteins and DNA), with lowerconcentration of the mitochondrial uncoupling proteinthermogenin. In 8-day-old rats exposed to hypoxiapostnatally (day 2 today 8), at anyTa below thermoneutralityO2 was higher than incontrols; also, in this group IBAT was hypoplastic with decreasedthermogenin. Additional measurements under variousexperimental conditions indicated that the increased thermogeniccapacity was not explained by the smaller body mass and increased bloodoxygen content or by the eventuality of intermittent cold stimuliduring the chronic hypoxia. On the other hand, chronic hypercapnia (3%CO2 in normoxia, fromday 2 to day8) also resulted in increased normoxic thermogenesis. We conclude that chronic hypoxia in the perinatal period1) reduces IBAT mass andthermogenin concentration and2) can increase the newborn's thermogenic capacity because of stress-related mechanisms not specific to hypoxia.

  相似文献   

17.
Repetitiveisometric tetanic contractions (1/s) of the caninegastrocnemius-plantaris muscle were studied either at optimal length(Lo) or shortlength (Ls;~0.9 · Lo),to determine the effects of initial length on mechanical and metabolicperformance in situ. Respective averages of mechanical and metabolicvariables were(Lo vs.Ls, allP < 0.05) passive tension (preload) = 55 vs. 6 g/g, maximal active tetanic tension(Po) = 544 vs. 174 (0.38 · Po)g/g, maximal blood flow () = 2.0 vs. 1.4 ml · min1 · g1,and maximal oxygen uptake(O2) = 12 vs. 9 µmol · min1 · g1.Tension at Lodecreased to0.64 · Po over20 min of repetitive contractions, demonstrating fatigue; there were nosignificant changes in tension atLs. In separatemuscles contracting atLo, was set to that measured atLs (1.1 ml · min1 · g1),resulting in decreased O2(7 µmol · min1 · g1),and rapid fatigue, to0.44 · Po. Thesedata demonstrate that 1)muscles at Lohave higher andO2 values than those at Ls;2) fatigue occurs atLo with highO2, adjusting metabolic demand (tension output) to match supply; and3) the lack of fatigue atLs with lowertension, , andO2 suggestsadequate matching of metabolic demand, set low by shortmuscle length, with supply optimized by low preload. Thesedifferences in tension andO2 betweenLo andLs groupsindicate that muscles contracting isometrically at initial lengthsshorter than Loare working under submaximal conditions.

  相似文献   

18.
Isolated rat heart perfused with 1.5-7.5µM NO solutions or bradykinin, which activates endothelial NOsynthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 µM NO, n = 18,P < 0.05) and to 1.2 ± 0.1 µM O2 · min1 · gtissue1 (10 µM bradykinin, n = 10,P < 0.05). Perfused NO concentrations correlated with aninduced release of hydrogen peroxide (H2O2) inthe effluent (r = 0.99, P < 0.01). NO markedlydecreased the O2 uptake of isolated rat heart mitochondria(50% inhibition at 0.4 µM NO, r = 0.99,P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b andcytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound tomyoglobin; this fact is consistent with NO steady-state concentrationsof 0.1-0.3 µM, which affect mitochondria. In the intact heart,finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected byH2O2), which in turn contributes to thephysiological clearance of NO through peroxynitrite formation.

  相似文献   

19.
Oxygen transport in conscious newborn dogs during hypoxic hypometabolism   总被引:1,自引:0,他引:1  
We questioned whether the decrease inO2 consumption(O2) during hypoxia innewborns is a regulated response or reflects a limitation inO2 availability. Experiments wereconducted on previously instrumented conscious newborn dogs.O2 was measured at a warmambient temperature (30°C, n = 7)or in the cold (20°C, n = 6),while the animals breathed air or were sequentially exposed to 15 minof fractional inspired O2(FIO2): 21, 18, 15, 12, 10, 8, and 6%. In normoxia,O2 averaged 15 ± 1 (SE)and 25 ± 1 ml · kg1 · min1in warm and cold conditions, respectively. In the warmcondition, hypometabolism (i.e., hypoxicO2 < normoxicO2) occurred at FIO2 10%, whereas in thecold condition, hypometabolism occurred atFIO2 12%. The sameresults were obtained in a separate group(n = 14) of noninstrumented puppies.For all levels of FIO2 withhypometabolism, the relationships between measures ofO2 availability (arterialO2 saturation or content, venousPO2 or saturation,x-axis) vs.O2(y-axis) had lower slopes in warm than in coldconditions. Hence, O2 during hypometabolism in the warm condition was not the maximal attainable for the level of oxygenation. The results do not support thepossibility that the hypoxic drop inO2 in the newborn reflects a limitation in O2availability. The results are compatible with the ideathat the phenomenon is one of "regulated conformism" tohypoxia.

  相似文献   

20.
Effects of temperature (15°, 20° and 25°C), O2 partialpressure (PO2=0, 1, 2, 4, and 6 kPa), and individual size(12–79 mm shell length; SL) on survivorship of specimensof the non-indigenous, marine, brown mussel, Perna perna, fromTexas were investigated to assess its potential distributionin North America. Its hypoxia tolerance was temperature-dependent,survivorship being significantly extended at lower temperaturesunder all tested lethal PO2. Incipient tolerated PO2 was 4 and6 kPa at 15 and 20°C, respectively, with >50% mortalityoccurring at 25°C at all tested levels of hypoxia. PO2 hadless of an effect on survival of hypoxia than temperature. At25°C, survivorship was not different over a PO2 range of0–2 kPa and increased only at 4 and 6 kPa. Survivorshipwas size-dependent. Median survival times increased with increasingSL in anoxia and PO2=1 kPa, but at 2, 4 and 6 kPa,smaller individuals survived longer than larger individuals.With tolerance levels similar to other estuarine bivalve species,P. perna should withstand hypoxia encountered in estuarine environments.Thus, its restriction to intertidal rocky shores may be dueto other parameters, particularly its relatively low temperaturetolerance. (Received 26 January 2004; accepted 31 March 2005)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号