首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keeping French-bean plants before inoculation at 36, 32 or 28°C. for 1–2 days increased their susceptibility to infection with red clover mottle virus, but longer exposures to 36 and 32°C. decreased susceptibility. Susceptibility increased most rapidly at 36°C. The number of infections was unaffected by changes in post-inoculation temperatures between 12 and 24°C., but decreased above 24°C. The rate virus multiplied increased with increase of temperature up to 28°C., but the maximum virus concentrations reached at 18, 24 and 28°C. were very similar and above the maximum reached at 30°C.
Thiouracil inhibited infection slightly but neither it nor azaguanine affected the multiplication of red clover mottle virus in French bean. Trichothecin inhibited infection and interfered with virus accumulation. Inhibition of infection was associated with macroscopic injury to the leaves, and washing leaves up to 1 hr. after inoculation prevented both inhibition and leaf damage. Virus multiplication was not resumed when leaves were transferred from trichothecin solutions to water.  相似文献   

2.
Red clover plants, collected from nine widely separated permanent pastures in England and Wales, were tested for sap-transmissible viruses. Viruses were identified by the symptoms they caused in test plants, by electron microscopy, and by serological tests. Of the 265 plants tested 14% were infected. Only pea mosaic virus was common and widespread; it was found in 8% of the plants, and in seven of the fields. Other viruses isolated were arabis mosaic, bean yellow mosaic, red clover mottle, and red clover vein mosaic; only red clover mottle virus produced diagnostic symptoms in red clover. No viruses were detected in seedlings grown from seed from eighty-nine commercial seed crops. Attempts to transmit red clover mottle virus by the Collembolan Sminthurus viridis L., which is common on red clover, failed.  相似文献   

3.
Two strains of a virus designated Glycine mosaic virus (GMV) were found in Glycine clandestina and G. tabacina, legumes indigenous to Australia and the western Pacific region. When transmitted by sap inoculation, GMV infected mostly leguminous species, and caused mosaic and mottling symptoms. The virus was not found naturally in soybean G. max, but it infected all of the 21 cultivars tested. GMV has isometric particles of c. 28 nm diameter, and produces three components with sedimentation coefficients of 60 S (top), 103 S (middle), and 130 S (bottom). Both middle and bottom components are required for infectivity. The virions contain two major proteins with molecular weights of c. 21 500 and 42 000. GMV produces large aggregates of particles in the cytoplasm of the mesophyll cells of pea Pisum sativum, and also induces amorphous membrane-bound bodies and cytoplasmic vesicles. The type strain (from New South Wales) reacts with antisera to Echtes Ackerbohnenmosaik, broad bean stain, and a Californian isolate of squash mosaic virus. The GW strain (from Queensland) reacts with all of the latter antisera, as well as with antisera to cowpea mosaic virus (Sb and Ark strains), bean pod mottle, and red clover mottle viruses, and is serologically related to, but not identical with, the type strain. These properties clearly establish GMV as a new member of the comovirus group.  相似文献   

4.
A virus causing ringspot patterns and vein clearing of red currant leaves is reported. It is inactivated at 66–68°C., tolerates a dilution of 1:2000 but not 1:5000, loses infectivity after 7–9 days in vitro and has been transmitted only by sap inoculation.
The virus infects plants in a wide range of families, resulting in chlorotic and necrotic symptoms. On Nicotiana tabacum it causes local and systemic symptoms of the ringspot type. Its host range and physical properties differ from other viruses causing ringspot symptoms, and the name red currant ringspot virus is therefore suggested.  相似文献   

5.
The minimum acquisition period of velvet tobacco mottle virus (VTMoV) by its mirid vector Cyrtopeltis nicotianae was about 1 min, with an increase in the rate of transmission (i.e. proportion of test plants infected) for acquisition periods up to 1000 min. Pre-acquisition starvation periods up to 18 h did not affect the rate of transmission. After an acquisition access period of 2 days, the minimum inoculation period was between 1 and 2 h and the rate of transmission increased with increasing inoculation time; when the acquisition access period was 1 h, or if vectors were fasted for 16 h after the 2 day acquisition, the rate of transmission was significantly lower. When mirids were transferred sequentially each day to a healthy plant after a 24 h acquisition feed, they transmitted intermittently for up to 10 days. Up to 50% of mirids transmitted after a moult and this was not due to the mirids probing the shed cuticles or exudates of infective insects. Mirids transmitted after a moult, following acquisition periods of 10, 100 or 1000 min. C. nicotianae transmitted solanum nodiflorum mottle virus (SNMV), sowbane mosaic virus (SoMV) and southern bean mosaic virus (SBMV), but not subterranean clover mottle virus (SCMoV), lucerne transient streak virus (LTSV), tobacco ringspot virus (TRSV), galinsoga mosaic virus (GMV), nor nicotiana velutina mosaic virus (NVMV). Tomato bushy stunt virus (TBSV) was transmitted to 1/58 test plants.  相似文献   

6.
Plants from 2nd to 6th year leys of the legume goat's rue (Galega orientalis Lam.) were tested for infection with bean yellow mosaic (BYMV), bean common mosaic (BCMV), alfalfa mosaic (AMV), broad bean stain (BBSV), red clover mottle (RCMV) and cucumber mosaic (CMV) viruses by enzyme-linked immunosorbent assay (ELISA), electron microscopy, and by sap-inoculation to various test plant species. No virus infections were observed in goat's rue in the field. Glasshouse-grown seedlings of goat's rue were inoculated with the above viruses. No virus was detected in the inoculated plants. The results suggest that goat's rue is extremely resistant to the above six viruses which are important in other forage legumes.  相似文献   

7.
A new virus, peanut stripe (PStV), isolated from groundnut (Arachis hypogaea) in the USA, induced characteristic striping, discontinuous vein banding along the lateral veins, and oakleaf mosaic in groundnut. The virus was also isolated from germplasm lines introduced from the People's Republic of China. PStV was transmitted by inoculation of sap to nine species of the Chenopodiaceae, Leguminosae, and Solanaceae; Chenopodium amaranticolor was a good local lesion host. PStV was also transmitted by Aphis craccivora in a non-persistent manner and through seed of groundnut up to 37%. The virus remained infective in buffered plant extracts after diluting to 10-3, storage for 3 days at 20°C, and heating for 10 min at 60°C but not 65°C. Purified virus preparations contained flexuous filamentous particles c. 752 nm long, which contained a major polypeptide of 33 500 daltons and one nucleic acid species of 3·1 × 106 daltons. In ELISA, PStV was serologically related to blackeye cowpea mosaic, soybean mosaic, clover yellow vein, and pepper veinal mottle viruses but not to peanut mottle, potato Y, tobacco etch, and peanut green mosaic viruses. On the basis of these properties PStV is identified as a new potyvirus in groundnut.  相似文献   

8.
The cowpea strain of tobacco mosaic virus was isolated from a range of leguminous hosts at Ibadan, but was rare in cultivated crops. Systemic symptoms in species infected experimentally are described.
A new virus of cowpea was also found in Nigeria. The physical properties (thermal inactivation point 56° C., dilution end-point 1/50,000 and longevity in vitro 4 days at 25° C.) differ from those for cowpea viruses reported elsewhere and the name cowpea yellow mosaic virus is proposed. This virus produces local lesions in French bean ( Phaseolus vulgaris L.) and local and systemic lesions in Bengal bean ( Mucuna aterrima Holland), but does not infect other leguminous hosts. The virus was purified and an antiserum prepared against it.
Both viruses are transmitted by a beetle ( Ootheca mutabilis Sahlb.) which loses infectivity within 48 hr. of leaving plants infected with either or both viruses.  相似文献   

9.
A severe disease affecting many plants in a crop of broad beans was found to be caused by a previously undescribed virus, provisionally named broad-bean mottle virus. The distribution of diseased plants suggested spread by a vector, but none of the six insects tested transmitted it. The virus was transmitted to several species of leguminous plants by mechanical inoculation of sap; infectivity for some hosts seemed to be increased by propagation in these hosts.
The virus has an unusual combination of properties. Its thermal inactivation point is about 95°C., whereas sap becomes non-infective within 3 weeks at room temperature. The infection end-point of broad-bean sap is 1/1000, only a little higher than the precipitation titre with specific antiserum. Precipitation with antiserum occurs over a smaller range of antigen/antibody ratios than with other viruses previously studied, possibly because of its greater solubility; it is not precipitated with (NH4)2SO4 until the salt concentration exceeds 75% saturation.
A specific nucleoprotein, containing nucleic acid of the ribose type, can be isolated from infective broad-bean sap in yields up to 2 g./l. Purified preparations, made by salt precipitation and ultracentrifugation, contain uniform spherical particles approximately 17 mμ in diameter. It is suggested that much of this nucleoprotein is non-infective, but may otherwise resemble infective particles.  相似文献   

10.
A mosaic disease of cowpea ( Vigna sinensis Endl.), prevalent in the bean-growing regions of China, is described.
The characteristic symptoms of the disease are conspicuous mosaic patterns, deformation and distortion of leaves and stunting of the plant.
The cowpea mosaic virus is transmitted by Aphis rumicis L., Macrosiphum pisi Kalt. and Aphis gossypii Glov. It is also transmitted by artificial juice inoculation. The virus is seed-bome. It withstands ageing m vitro for 3 days at 220 C. Its inactivation temperature is approximately 62° C. its tolerance to dilution is about 1: 3000.
Cowpea mosaic virus infects lima bean and Adzuki bean in addition to cowpea.
The relation of this virus to cowpea mosaic virus described by McLean and asparagus-bean mosaic virus described by Snyder is discussed.  相似文献   

11.
Cucumber mosaic virus strains differed in their ability to multiply in plants at 37° C. Some strains multiplied in inoculated leaves and produced systemic symptoms in plants at this temperature; plants systemically infected with one such strain remained infected after prolonged treatment at 37° C. Other strains did not appear to multiply in inoculated leaves at 37° C. and heat treatment was successful in freeing plants from infection with these. Tests with one strain of each type showed both to be rapidly inactivated in expressed sap at 37° C.
Strains of cucumber mosaic virus forming small necrotic local lesions in leaves of french bean var. Canadian Wonder, produced many fewer lesions in plants kept after inoculation at 25° C. for 24 hr. and then at 15° C. than in plants kept continuously at the lower temperature.  相似文献   

12.
The protease encoded by the large (B) RNA segment of cowpea mosaic virus was tested for its ability to recognize the in vitro translation products of the small (M) RNA segment from the comoviruses squash mosaic virus, red clover mottle virus, and cowpea severe mosaic virus (CPsMV, strains Dg and Ark), and from the nepovirus tomato black ring virus. Like M RNA from cowpea mosaic virus, the M RNAs from squash mosaic virus, red clover mottle virus, CPsMV-Dg, and CPsMV-Ark were all translated into two large polypeptides with apparent molecular weights which were different for each virus and even for the two CPsMV strains. Neither the in vitro products from squash mosaic virus, red clover mottle virus, and CPsMV M RNAs nor the in vitro product from tomato black ring virus RNA-2 were processed by the cowpea mosaic virus-encoded protease, indicating that the activity of this enzyme is highly specific.  相似文献   

13.
Field assessments were conducted to examine the interplay between host plant and predation in complex agricultural mosaic on pea aphid clover and alfalfa races. In one experiment, we examined the relative fitness on clover race (CR) and alfalfa race (AR) pea aphids on broad bean, red clover and alfalfa alone. But because clover is typically grown in a more complex agricultural mosaic with alfalfa and broad bean, a second experiment was conducted to assess the fitness consequences under predation in a more complex agricultural field setting that also included potential apparent competition with AR pea aphids. In a third experiment we tested for the effect of differential host race density on the fitness of the other host race mediated by a predator effect. CR pea aphids always had fitness losses when on broad bean (had lower fitness on broad bean relative to red clover) and fitness benefits when on red clover (higher fitness on red clover relative to broad bean), whether or not in apparent competition with alfalfa race aphids on bean and alfalfa. AR suffered fitness loss on both alfalfa and bean in apparent competition with CR on clover. Therefore we can conclude that the predation rate between host races was highly asymmetrical. The complexity of the agricultural mosaic thus can influence prey selection by predators on different host plants. These may have evolutionary consequences through context dependent fitness benefits on particular host plants.  相似文献   

14.
Subterranean clover (Trifolium subterraneum) is grown as a pasture legume in several temperate regions of the world where the soils are acidic and infertile, and the rainfall is winter dominant and less than 600 mm annually. It is particularly important in southern Australia where more than 16 million ha have been sown with this species as the pasture legume component. Nine viruses have been recorded infecting subterranean clover in the field. These are alfalfa mosaic, bean yellow mosaic (pea mosaic), beet western yellows, clover yellow vein, cucumber mosaic, pea enation mosaic, soybean dwarf (subterranean clover red leaf), subterranean clover mottle and white clover mosaic. In addition there is an important problem referred to as subterranean clover stunt that was assumed to be caused by a virus but whose aetiology is still unknown. The importance of these diseases is reviewed and details on their epidemiologies are outlined together with details on progress towards their control and some comments on matters worthy of attention in the future. Reference is also made to several exotic viruses known to infect subterranean clover experimentally that could possible cause problems if introduced into Australia.  相似文献   

15.
Two viruses occur widely in lupins in Britain. Alfalfa mosaic virus (AMV), of which two strains were isolated, was found mainly in named Russell varieties. Lupin mottle virus (LMV), a previously undescribed strain of the bean yellow mosaic virus (BYMV) common pea mosaic virus (CPMV) complex, was found more commonly in seedling lupins. Cucumber mosaic virus (CMV) was isolated once. The AMV strains were differentiated by their reaction in Phaseolus vulgaris; they were serologically closely related. Both AMV and LMV were aphid transmitted but not transmitted in lupin seed. LMV was distantly serologically related to both BYMV and CPMV. It cross-protected against BYMV but not against CPMV and it differed from both these viruses in some host reactions. The CMV isolate from lupins was similar to type CMV. It was transmitted both mechanically and by aphid, easily from cucumber to cucumber, but with difficulty from cucumber to lupin.  相似文献   

16.
Subterranean clover mottle sobemovirus (SCMV) was transmitted by manual inoculation of sap to 27 cultivars belonging to three sub-species of subterranean clover. The virus readily infected systemically all inoculated plants of five susceptible cultivars of ssp. subterraneum. Ten others showed partial resistance as not all infected plants developed systemic infection; cold winter conditions further delayed or prevented systemic movement in four of them. Two cultivars of spp. brachycalycinum and four of spp. yanninicum failed to develop systemic infection following inoculation and were considered highly resistant. Resistance to SCMV in three of the spp. yanninicum was further confirmed by the failure to establish detectable primary infections in most of the inoculated leaves. Moreover, when the four ssp. yanninicum cultivars were graft-inoculated with SCMV, systemic infection eventually developed in them but the virus concentration was low. SCMV was also transmitted by manual inoculation of sap to a further 23 species of Trifolium, Medicago or Pisum. Three species were non-hosts, five were infected only in inoculated leaves and 18 others developed systemic infection in some or all plants. SCMV reached very high concentrations and was stable in subterranean clover sap. It was transmitted experimentally between subterranean clover plants by brushing infected leaves against healthy ones and in swards was readily transmitted by the trampling and grazing of sheep, but only poorly by mowing. Seed transmission of SCMV to seedlings of five cultivars of subterranean clover was low (0–0.12%). SCMV was not transmitted by Myzus persicae.  相似文献   

17.
Severe stunting of parsley plants, with leaf chlorosis and reddening was reported from four localities in Britain in 1968-70. Affected plants were collected from thirteen sites in Bedfordshire, Buckinghamshire, Cheshire and Bristol, and five viruses (designated PV1-PV5) were isolated from them. The viruses were distinguished by electron microscopy, host range and type of aphid transmission. From diagnostic reactions in a range of host species and its transmission by Cavariella aegopodii Scop., the most frequently isolated virus (PV4) and the principal cause of the parsley disease was identified as carrot mottle virus (CMotV). The other four viruses were infrequently isolated. PV1, PV2 and PV3 were transmitted in the non-persistent manner by Myzus persicae Sulz. Each was purified and identified serologically as western celery mosaic virus, cucumber mosaic virus and broad bean wilt respectively. PV5 was not fully identified, but was transmitted by C. aegopodii in the presence of CMotV and had particles ca. 500 nm in length. Each of these viruses was re-transmitted to parsley, but induced slight symptoms or none.  相似文献   

18.
Glasshouse and mini-sward experiments were done to determine the relative roles of grazing and trampling by livestock in transmitting white clover mosaic (WC1MV) and subterranean clover mottle (SCMoV) viruses between clover plants in pastures. Wounding due to grazing was simulated by repeatedly cutting plants with serrated scissors (glasshouse) or mowing (mini-swards), while wounding due to trampling was simulated by repeatedly bashing plants with the flat end of a wooden hammer handle (glasshouse) or rolling (mini-swards). In glasshouse experiments, cutting was more effective than bashing in transmitting WC1MV to white clover (Trifolium repens) plants but cutting and bashing transmitted it to subterranean clover (T. subterraneum) plants at similar rates. In an experiment with white clover mini-swards, mowing was more effective than rolling in transmitting WC1MV, and when both were combined, initially spread exceeded that obtained when the spread from mowing and rolling alone was added together. In glasshouse experiments, bashing was more effective than cutting in transmitting SCMoV to subterranean clover plants. In one experiment, neither mowing nor rolling spread SCMoV in mini-swards of subterranean clover. When transmission to subterranean clover cultivars which were ‘susceptible’ or ‘moderately susceptible’ to SCMoV was compared in glasshouse experiments, repeated bashing spread the virus more slowly to the ‘moderately susceptible’ cultivars. When mixed with ruminant saliva, infective sap containing WC1MV or SCMoV was still infective to clover plants after 4 wk storage at room temperature. When infective sap was allowed to dry naturally on a metal surface, SCMoV still infected clover plants when the dried sap was taken up in tap water after 4 but not 14 days, while WC1MV was infective after 24 h but not 4 days. These results suggest that grazing and mowing are more effective than trampling at transmitting WC1MV to white clover plants in pastures, while trampling is more effective at spreading SCMoV to subterranean clover. However, both transmitted WC1MV to subterranean clover at similar rates. Possible reasons for these differences are discussed in relation to differences in clover plant morphology and virus-specific factors.  相似文献   

19.
Hypochoeris mosaic virus (HMV) is common in Hypochoeris radicata (‘cat's ear’) in western Canada. It infected 10 of 53 mechanically inoculated species in five of twelve families, but was not transmitted by aphids or through seed or soil. Sap from infected Nicotiana clevelandii was sometimes infective after dilution to 10-1 and occasionally 102, after 10 min at 45 but not 50°C, and after 1 but not 2 days at 20°C. Infectivity of crude nucleic acid extracts from infected leaves was rapidly abolished by RNase but not by DNase. Host sap contained very few rod-shaped particles or particle fragments mostly 21.0–22.5 nm in diameter, and up to 420 nm long but with predominant lengths of 120–140 and 240–260 nm. Many rods in purified virus preparations were less than 240 nm long, and the majority were c. 140 nm or shorter. The particles had a helical substructure with a pitch of 2.58 nm and contained a single type of protein of estimated mol. wt 24.5 × 103. HMV showed no serological relationship to eight morphologically similar viruses (beet necrotic yellow vein, broad bean necrosis, barley stripe mosaic, peanut clump, potato mop-top, Nicotiana velutina mosaic, wheat soil-borne mosaic and defective strains of tobacco mosaic). It is probably a hitherto undescribed tobamovirus.  相似文献   

20.
Chrysanthemum plants infected with tomato aspermy virus (TAV) produce severely distorted and discoloured flowers but show only slight leaf mottle.
TAV infected twenty-five of forty-five species (belonging to seventeen genera) tested and was transmitted by the aphid species Aulacorthum solarti, Macrosiphoniella sanborni and Myzus persicae .
Sap from infected tobacco leaves lost infectivity when diluted more than 1 in 10,000, when heated for 10 min. at above 65°C. and when stored for more than 42 hr. at 16–18°C.
Partial protection was obtained between TAV and two strains of cucumber mosaic virus. Evidence was obtained that this was true protection between related viruses and serological tests confirmed the view that TAV is a strain of cucumber mosaic virus. Evidence was obtained that this was true protection between related viruses and serological tests confirmed the view that TAV is a strain of cucumber mosaic virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号