共查询到20条相似文献,搜索用时 0 毫秒
1.
The first event in light perception is absorption of a photon by an opsin pigment, which induces isomerization of its 11-cis-retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical regeneration of 11-cis-retinaldehyde through an enzymatic pathway called the visual cycle. The isomerase, which converts an all-trans-retinyl ester to 11-cis-retinol, has never been identified. Here, we performed an unbiased cDNA expression screen to identify this isomerase. We discovered that the isomerase is a previously characterized protein called Rpe65. We confirmed our identification of the isomerase by demonstrating catalytic activity in mammalian and insect cells that express Rpe65. Mutations in the human RPE65 gene cause a blinding disease of infancy called Leber congenital amaurosis. Rpe65 with the Leber-associated C330Y and Y368H substitutions had no isomerase activity. Identification of Rpe65 as the isomerase explains the phenotypes in rpe65-/- knockout mice and in humans with Leber congenital amaurosis. 相似文献
2.
Mata NL Moghrabi WN Lee JS Bui TV Radu RA Horwitz J Travis GH 《The Journal of biological chemistry》2004,279(1):635-643
Photon capture by a rhodopsin pigment molecule induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. To restore light sensitivity, the all-trans-retinaldehyde must be chemically re-isomerized by an enzyme pathway called the visual cycle. Rpe65, an abundant protein in retinal pigment epithelial (RPE) cells and a homolog of beta-carotene dioxygenase, appears to play a role in this pathway. Rpe65-/- knockout mice massively accumulate all-trans-retinyl esters but lack 11-cis-retinoids and rhodopsin visual pigment in their retinas. Mutations in the human RPE65 gene cause a severe recessive blinding disease called Leber's congenital amaurosis. The function of Rpe65, however, is unknown. Here we show that Rpe65 specifically binds all-trans-retinyl palmitate but not 11-cis-retinyl palmitate by a spectral-shift assay, by co-elution during gel filtration, and by co-immunoprecipitation. Using a novel fluorescent resonance energy transfer (FRET) binding assay in liposomes, we demonstrate that Rpe65 extracts all-trans-retinyl esters from phospholipid membranes. Assays of isomerase activity reveal that Rpe65 strongly stimulates the enzymatic conversion of all-trans-retinyl palmitate to 11-cis-retinol in microsomes from bovine RPE cells. Moreover, we show that addition of Rpe65 to membranes from rpe65-/- mice, which possess no detectable isomerase activity, restores isomerase activity to wild-type levels. Rpe65 by itself, however, has no intrinsic isomerase activity. These observations suggest that Rpe65 presents retinyl esters as substrate to the isomerase for synthesis of visual chromophore. This proposed function explains the phenotype in mice and humans lacking Rpe65. 相似文献
3.
We have previously shown that membranes from the retinal pigment epithelium can transform added all-trans-retinol into a mixture of 11-cis-retinoids, demonstrating the "missing reaction" in the visual cycle for the first time (Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853). In this article, this isomerase activity is further characterized. Double-label experiments with [15-3H]- and [15-14C]all-trans-retinol as the substrate show that the tritium label is retained in the 11-cis-retinol and 11-cis-retinyl palmitate products. This requires that isomerization occur at the alcohol level of oxidation. All-trans-retinyl esters, such as the palmitate, acetate, butyrate, and hexanoate esters, are not directly transformed into their 11-cis counterparts by the membranes. The data are consistent with the presence of an all-trans-retinol isomerase enzyme system or enzyme complex, which produces 11-cis-retinol. Other isomeric retinols were tested for substrate activity. Neither 9-cis-retinol(al) nor 13-cis-retinol were processed by the isomerase. Since the membranes containing the isomerase possess other retinol metabolizing activities, such as retinyl ester synthetase and dehydrogenase activities, further purification was attempted. Appreciable quantities of all detergents tested led to the disappearance of isomerase activity, and high salt or EDTA did not dissociate isomerase activity from the membranes. However, extensive sonication of the membranes did produce a 100,000 x g supernatant fraction of light membranes depleted of other all-trans-retinol processing activities. The isomerase activity in these membranes was saturable with all-trans-retinol, as required for a biologically significant process, and showed a Vmax of 5 pmol/h/mg of protein, a KM of 0.8 microM, and a pH optimum of 8. The isomerase was destroyed by proteinase K, by phospholipase C, by heating, or by ethanol at concentrations greater than 1%. The addition of high energy compounds, such as MgATP, MgGTP, or palmitoyl-CoA, did not appear to stimulate isomerase activity in the 100,000 x g supernatant. 相似文献
4.
Burgess JK Hotchkiss KA Suter C Dudman NP Szöllösi J Chesterman CN Chong BH Hogg PJ 《The Journal of biological chemistry》2000,275(13):9758-9766
Platelet function is influenced by the platelet thiol-disulfide balance. Platelet activation resulted in 440% increase in surface protein thiol groups. Two proteins that presented free thiol(s) on the activated platelet surface were protein-disulfide isomerase (PDI) and glycoprotein 1balpha (GP1balpha). PDI contains two active site dithiols/disulfides. The active sites of 26% of the PDI on resting platelets was in the dithiol form, compared with 81% in the dithiol form on activated platelets. Similarly, GP1balpha presented one or more free thiols on the activated platelet surface but not on resting platelets. Anti-PDI antibodies increased the dissociation constant for binding of vWF to platelets by approximately 50% and PDI and GP1balpha were sufficiently close on the platelet surface to allow fluorescence resonance energy transfer between chromophores attached to PDI and GP1balpha. Incubation of resting platelets with anti-PDI antibodies followed by activation with thrombin enhanced labeling and binding of monoclonal antibodies to the N-terminal region of GP1balpha on the activated platelet surface. These observations indicated that platelet activation triggered reduction of the active site disulfides of PDI and a conformational change in GP1balpha that resulted in exposure of a free thiol(s). 相似文献
5.
Vertebrate retinas contain two types of light-detecting cells. Rods subserve vision in dim light, while cones provide color vision in bright light. Both contain light-sensitive proteins called opsins. The light-absorbing chromophore in most opsins is 11-cis-retinaldehyde, which is isomerized to all-trans-retinaldehyde by absorption of a photon. Restoration of light sensitivity requires chemical re-isomerization of retinaldehyde by an enzymatic pathway called the visual cycle in the retinal pigment epithelium. The isomerase in this pathway uses all-trans-retinyl esters synthesized by lecithin retinol acyl transferase (LRAT) as the substrate. Several lines of evidence suggest that cone opsins regenerate by a different mechanism. Here we demonstrate the existence of two catalytic activities in chicken retinas. The first is an isomerase activity that effects interconversion of all-trans-retinol and 11-cis-retinol. The second is an ester synthase that effects palmitoyl coenzyme A-dependent synthesis of all-trans- and 11-cis-retinyl esters. Kinetic analysis of these two activities suggests that they act in concert to drive the formation of 11-cis-retinoids in chicken retinas. These activities may be part of a new visual cycle for the regeneration of chromophores in cones. 相似文献
6.
Bereta G Kiser PD Golczak M Sun W Heon E Saperstein DA Palczewski K 《Biochemistry》2008,47(37):9856-9865
Pathogenic mutations in the RPE65 gene are associated with a spectrum of congenital blinding diseases in humans. We evaluated changes in the promoter region, coding regions, and exon/intron junctions of the RPE65 gene by direct sequencing of DNA from 36 patients affected with Leber's congenital amaurosis (LCA), 62 with autosomal recessive retinitis pigmentosa (arRP), and 21 with autosomal dominant/recessive cone-rod dystrophies (CORD). Fifteen different variants were found, of which 6 were novel. Interesting was Gly244Val, a novel mutation close to the catalytic center. To assess the role of this mutation in RPE65 inactivation, we performed detailed biochemical studies of the mutant along with a structural analysis of the 244 amino acid position with respect to amino acids known to be important for RPE65-dependent retinoid isomerization. Bicistronic plasmid expression of the RPE65 Gly244Val mutant and enhanced green fluorescent protein (EGFP) allowed us to document both its instability in cultured cells by cell sorting and immunoblotting methodology and its loss of RPE65-dependent isomerase activity by enzymatic assays. Further insights into the structural requirements for retinoid isomerization by RPE65 were obtained by using the carotenoid oxygenase (ACO) from Synechocystis (PDB accession code 2BIW ) as a structural template to construct a RPE65 homology model and locating all known inactivating mutations including Gly244Val within this model. 相似文献
7.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2022,1869(9):119298
Calpain-5 (CAPN5) is a member of the calpain family of calcium-activated neutral thiol proteases. CAPN5 is partly membrane associated, despite its lack of a transmembrane domain. Unlike classical calpains, CAPN5 contains a C-terminal C2 domain. C2 domains often have affinity to lipids, mediating membrane association. We recently reported that the C2 domain of CAPN5 was essential for its membrane association and the activation of its autolytic activity. However, despite the removal of the C2 domain by autolysis, the N-terminal fragment of CAPN5 remained membrane associated. S-acylation, also referred to as S-palmitoylation, is a reversible post-translational lipid modification of cysteine residues that promotes membrane association of soluble proteins. In the present study several S-acylated cysteine residues were identified in CAPN5 with the acyl-PEG exchange method. Data reported here demonstrate that CAPN5 is S-acylated on up to three cysteine residues including Cys-4 and Cys-512, and likely Cys-507. The D589N mutation in a potential calcium binding loop within the C2 domain interfered with the S-acylation of CAPN5, likely preventing initial membrane association. Mutating specific cysteine residues of CAPN5 interfered with both its membrane association and the activation of CAPN5 autolysis. Taken together, our results suggest that the S-acylation of CAPN5 is critical for its membrane localization which appears to favor its enzymatic activity. 相似文献
8.
The 3-oxo-delta 5-steroid isomerase (EC 5.3.3.1) activity from bovine adrenal cortex microsomes can be extracted in soluble form by the use of appropriate detergents, although recovery of enzyme activity is low (ca. 2%). Activity is restored upon removal of detergent and reconstitution of the enzyme into phospholipid vesicles. Both Km and Vmax of 3-oxo-delta 5-steroid isomerase of intact microsomes increase as the pH is raised from 7.5 to 9.5, with a particularly sharp increase (6- to 8-fold) above pH 8.5. The kinetic parameters of a detergent-solubilized isomerase preparation show little increase from pH 7.5 to 9.0, but isomerase reconstituted into artificial phospholipid vesicles demonstrates a 6- to 10-fold increase in both Km and Vmax over this pH range. Addition of Ca++ (1 mM) enhances the pH dependence of both Km and Vmax of the membrane-bound isomerase, causing a slight rise in Vmax/Km. 相似文献
9.
Tosatto L Andrighetti AO Plotegher N Antonini V Tessari I Ricci L Bubacco L Dalla Serra M 《Biochimica et biophysica acta》2012,1818(11):2876-2883
Alpha-synuclein is a natively unfolded protein widely expressed in neurons at the presynaptic level. It is linked to Parkinson's disease by two lines of evidence: amyloid fibrils of the protein accumulate in patients' brains and three genetic mutants cause autosomal dominant forms of the disease. The biological role of the protein and the mechanisms involved in the etiopathogenesis of Parkinson's disease are still unknown. Membrane binding causes the formation of an amphipathic alpha-helix, which lies on the surface without crossing the bilayer. Recent observations however reported that the application of a voltage induces a pore-like activity of alpha-synuclein. This study aims to characterize the pore forming activity of the protein starting from its monomeric form. In particular, experiments with planar lipid membranes allowed recording of conductance activity bursts with a defined and reproducible fingerprint. Additional experiments with deletion mutants and covalently bound alpha-synuclein dimers were performed to understand both pore assembly and stoichiometry. The information acquired allowed formulation of a model for pore formation at different conductance levels. 相似文献
10.
Boily MH Ndayibagira A Spear PA 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2003,134(1):11-23
Retinoids stored in the avian egg are essential for normal development, however, laboratory and field experiments suggest that they are affected by environmental contaminants. Lecithin:retinol acyltransferase (LRAT) activity was detected in the microsomal fraction of the yolk-sac membrane of the Japanese quail at day 6 of development. LRAT activity was maximal at pH 7.0 having apparent kinetic parameters of K(m)=1.35 microM and V(max)=0.21 nmol/mg protein/h and was inhibited by the sulfhydryl modifying agent N-ethyl-maleimide. Retinol ester hydrolase (REH) activity in the microsomal fraction of the yolk-sac membrane was stimulated by the bile salt analogue 3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane sulfonate and was maximal at pH 9.0 with apparent K(m)=77 microM and V(max)=34.3 nmol/mg protein/h. Injection of the PCB congener 2,3,3',4,4'-pentachlorobiphenyl increased both REH and LRAT activities, whereas 2,3,3',4-tetrachlorobiphenyl stimulated LRAT. Yolk retinol concentration and the molar ratio retinol:retinyl palmitate were lower in the exposed eggs. Yolk retinol concentration decreased as LRAT increased (R(2)=0.89) suggesting that certain PCB congeners may affect vitamin A mobilization in ovo by increasing LRAT activity in the yolk-sac membrane. 相似文献
11.
Farooqui M Franco PJ Thompson J Kagechika H Chandraratna RA Banaszak L Wei LN 《Biochemistry》2003,42(4):971-979
Receptor interacting protein 140 (RIP140) interacts with retinoic acid receptor (RAR) and retinoid X receptor (RXR) constitutively, but hormone binding enhances this interaction. The ligand-independent interaction is mediated by the amino and central regions of RIP140 which contain a total of nine copies of the LXXLL motif, whereas the agonist-induced interaction is mediated by its carboxyl terminus which contains a novel motif (1063-1076, LTKTNPILYYMLQK). The ligand-independent interaction could be enhanced slightly by agonists, whereas the ligand-dependent interaction was strictly agonist dependent for both RAR and RXR. In the context of heterodimers, ligand occupancy of RXR played a more dominant role for both molecular interaction and biological activity of RIP140. Competition and mutation studies demonstrated an essential role for (1067)Asn and (1073)Met for a ligand-dependent interaction. A model was proposed to address the constitutive and agonist-dependent interaction of RIP140 with RAR/RXR. 相似文献
12.
While the need for vitamin A for the normal progression of male germ cell differentiation has been known for many years, the molecular mechanisms underlying this requirement are poorly understood. This review will explore the aspects of the effects on spermatogenesis of dietary deprivation of vitamin A, in particular as to how they compare to the male sterility that results from the genetic ablation of function of the retinoid receptor RARalpha. The effects of other genes involved with retinoid synthesis, transport, and degradation are also considered. The possible cellular mechanisms that may be affected by the lack of retinoid signaling are discussed, in particular, cell cycle regulation and cell-cell interaction, both of which are critical for normal spermatogenesis. 相似文献
13.
Solubilization and partial purification of retinyl ester synthetase and retinoid isomerase from bovine ocular pigment epithelium 总被引:2,自引:0,他引:2
Studies reported previously from this laboratory have demonstrated that membranes from the pigment epithelium of the vertebrate eye can transform free all-trans-retinol to 11-cis-retinol as well as 11-cis- and all trans-retinyl esters (Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853; Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) J. Biol. Chem. 262, 16848-16857; Fulton, B. S., and Rando, R. R. (1987) Biochemistry 26, 7938-7945). The congeneric retinals are also formed under conditions where retinol redox activity is present. Here we report the successful solubilization of both the retinyl ester synthetase and isomerase activities from the pigment epithelium membranes of the bovine eye. The zwitterionic detergent Zwittergent 3-14(N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate; cmc 0.012%) gave optimal solubilization of both activities. Three initial criteria for successful solubilization were used. First, high speed centrifugation (greater than 150,000 x g) left the activities in the supernatant. Second, the solubilized enzymatic activities were found in the included volume upon gel filtration. Finally, the solubilized activities were quantitatively passed through a 0.22-microns filter. Employing anion exchange and gel filtration chromatography results in a partial purification of the retinyl ester synthetase (approximately 189-fold). The solubilized retinoid isomerase is also partially purified (approximately 10-14-fold) following anion exchange chromatography. It is also shown that the membrane-bound and solubilized ester synthetase catalyzes the esterification of retinol using added lecithins as exogenous acyl donors. In addition, evidence is provided indicating that there is a positional selectivity for the acyl group transfer from the lecithin to retinol. The transfer occurs largely, if not entirely, from the 1-position of the lecithin. 相似文献
14.
Yasuhiro Arii Kohei Butsusihta Shin-Ichi Fukuoka 《Bioscience, biotechnology, and biochemistry》2013,77(6):978-985
Annexin A4 (Anx4) is a cytosolic calcium-binding protein with four repeat domains, each containing one calcium-binding site (CBS). The protein interacts with the phospholipid membrane through the CBS-coordinated calcium ion, although the role of each CBS in the calcium-dependent association is unclear. To determine the role of each CBS, 15 CBS-abolished variants were produced in various combinations by substitution of a calcium-liganding residue on each CBS by Ala. Various mutant combinations produced different influences on calcium-dependent membrane-binding behavior and on the sodium-dependent dissociation of membrane-bound Anx4. Our data suggest the interaction of Anx4 with the lipid membrane consists of strong and weak interactions. CBSs I and IV mediate formation of strong interactions, while CBSs II and III are important for weak interactions. We also suggest Anx4 binds the lipid membrane through CBSs I and IV in the cytoplasmic fluids. 相似文献
15.
Summary
Streptomyces
kanamyceticus produces a significant level of intracellular glucose isomerase when grown in submerged culture. The optimum temperature for enzyme activity is 90°C, but the optimum pH is changed by the kinds of buffer solution used. The activity is higher at pH 7.0–9.5. Treatment of cells with cetyl trimethyl ammonium bromide extracts almost the same amount of the enzyme as ultrasonic treatment. The selection of the method of treatment for enzyme extraction depends, however, on the nature of cell growth in synthetic or complex medium. 相似文献
16.
Effect of protein and peptide inhibitors on the activity of protein disulfide isomerase 总被引:5,自引:0,他引:5
The protein disulfide isomerase catalyzed reduction of insulin by glutathione is inhibited by peptides of various length and amino acid composition. Peptide inhibitors are competitive against insulin and noncompetitive against GSH, consistent with a sequential rather than a double displacement mechanism. Peptides of unrelated primary sequence that do not contain cysteine inhibit the GSH-insulin transhydrogenase activity of PDI, and the affinity of these peptides toward the enzyme is largely dependent on the peptide length rather than composition, hydrophobicity, or charge. Cysteine-containing peptides are 4-8-fold better inhibitors than non-cysteine-containing peptides of the same length, suggesting a cysteine-specific component to the interaction with the enzyme. Oxidized insulin chain B also inhibits the oxidative folding of reduced ribonuclease in a glutathione redox buffer with an inhibition constant that is comparable to that observed for the inhibition of insulin reduction, suggesting a similar if not identical binding site for the catalysis of oxidative protein folding and the reduction of insulin. 相似文献
17.
Maeda A Maeda T Imanishi Y Kuksa V Alekseev A Bronson JD Zhang H Zhu L Sun W Saperstein DA Rieke F Baehr W Palczewski K 《The Journal of biological chemistry》2005,280(19):18822-18832
The retinoid cycle is a recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. Photoreceptor-specific retinol dehydrogenase (prRDH) catalyzes reduction of all-trans-retinal to all-trans-retinol and is thought to be a key enzyme in the retinoid cycle. We disrupted mouse prRDH (human gene symbol RDH8) gene expression by targeted recombination and generated a homozygous prRDH knock-out (prRDH-/-) mouse. Histological analysis and electron microscopy of retinas from 6- to 8-week-old prRDH-/- mice revealed no structural differences of the photoreceptors or inner retina. For brief light exposure, absence of prRDH did not affect the rate of 11-cis-retinal regeneration or the decay of Meta II, the activated form of rhodopsin. Absence of prRDH, however, caused significant accumulation of all-trans-retinal following exposure to bright lights and delayed recovery of rod function as measured by electroretinograms and single cell recordings. Retention of all-trans-retinal resulted in slight overproduction of A2E, a condensation product of all-trans-retinal and phosphatidylethanolamine. We conclude that prRDH is an enzyme that catalyzes reduction of all-trans-retinal in the rod outer segment, most noticeably at higher light intensities and prolonged illumination, but is not an essential enzyme of the retinoid cycle. 相似文献
18.
S-nitrosoglutathione (GSNO) denitrosation activity of recombinant human protein disulfide isomerase (PDI) has been kinetically characterized by monitoring the loss of the S-NO absorbance, using a NO electrode, and with the aid of the fluorogenic NOx probe 2,3-diaminonaphthalene. The initial rates of denitrosation as a function of [GSNO] displayed hyperbolic behavior irrespective of the method used to monitor denitrosation. The Km values estimated for GSNO were 65 +/- 5 microm and 40 +/- 10 microm for the loss in the S-NO bond and NO production (NO electrode or 2,3-diaminonaphthalene), respectively. Hemoglobin assay provided additional evidence that the final product of PDI-dependent GSNO denitrosation was NO*. A catalytic mechanism, involving a nitroxyl disulfide intermediate stabilized by imidazole (His160 a-domain or His589 a'-domain), which after undergoing a one-electron oxidation decomposes to yield NO plus dithiyl radical, has been proposed. Evidence for the formation of thiyl/dithiyl radicals during PDI-catalyzed denitrosation was obtained with 4-((9-acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-1-oxyl. Evidence has also been obtained showing that in a NO- and O2-rich environment, PDI can form N2O3 in its hydrophobic domains. This "NO-charged PDI" can perform intra- and intermolecular S-nitrosation reactions similar to that proposed for serum albumin. Interestingly, reduced PDI was able to denitrosate S-nitrosated PDI (PDI-SNO) resulting in the release of NO. PDI-SNO, once formed, is stable at room temperature in the absence of reducing agent over the period of 2 h. It has been established that PDI is continuously secreted from cells that are net producers of NO-like endothelial cells. The present demonstration that PDI can be S-nitrosated and that PDI-SNO can be denitrosated by PDI suggests that this enzyme could be intimately involved in the transport of intracellular NO equivalents to the cell surface as well as the previous demonstration of PDI in the transfer of S-nitrosothiol-bound NO to the cytosol. 相似文献
19.
20.
P. López-Aparicio M. N. Recio J. C. Prieto M. A. Pérez-Albarsanz 《Bioscience reports》1994,14(3):131-138
The influence of lindane (gamma-hexachlorocyclohexane) on fluidity of plasma membranes from rat renal cortical tubules has been investigated. Preincubation with lindane increased membrane fluidity. This effect was accompanied by (i) a decrease in the transport of glucose with regard to the controls and (ii) an inhibition of the -adrenergic stimulatory activity upon cyclic AMP accumulation. However, a significant decrease of the membrane fluidity was found when rats were injected with lindane for 12 days. The injection of lindane exerted the opposite effect on the membrane proteins, the glucose transporter and the -adrenergic receptor, enhancing the glucose uptake and increasing the isoproterenol-stimulated cycle AMP accumulation. A possible explanation of the difference could involve a resistance to membrane disordering by lindane through a regulatory mechanism that would balance the activity of many lindane-sensitive proteins in insecticide-injected rats. 相似文献